`
yancaofei
  • 浏览: 3914 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

HBase系统架构

 
阅读更多

HBase 系统架构 


 

HBase是Apache Hadoop的数据库,能够对大型数据提供随机、实时的读写访问。HBase的目标是存储并处理大型的数据。HBase是一个开源的,分布式的,多版本的,面向列的存储模型。它存储的是松散型数据。

HBase特性:

1 高可靠性

2 高效性

3 面向列

4 可伸缩

5 可在廉价PC Server搭建大规模结构化存储集群

HBase是Google BigTable的开源实现,其相互对应如下:

          Google            HBase
文件存储系统      GFS              HDFS
海量数据处理      MapReduce Hadoop     MapReduce
协同服务管理    Chubby           Zookeeper



HBase关系图:



 

HBase位于结构化存储层,围绕HBase,各部件对HBase的支持情况:
Hadoop部件            作用
HDFS              高可靠的底层存储支持
MapReduce             高性能的计算能力
Zookeeper            稳定服务和failover机制
Pig&Hive             高层语言支持,便于数据统计
Sqoop              提供RDBMS数据导入,便于传统数据库向HBase迁移

访问HBase的接口

方式            特点              场合
Native Java API      最常规和高效            Hadoop MapReduce Job并行处理HBase表数据
HBase Shell         最简单接口             HBase管理使用
Thrift Gateway      利用Thrift序列化支持多种语言     异构系统在线访问HBase表数据
Rest Gateway       解除语言限制            Rest风格Http API访问
Pig            Pig Latin六十编程语言处理数据   数据统计
Hive            简单,SqlLike

HBase 数据模型


 


组成部件说明:

Row Key:     Table主键 行键 Table中记录按照Row Key排序
Timestamp:     每次对数据操作对应的时间戳,也即数据的version number
Column Family:  列簇,一个table在水平方向有一个或者多个列簇,列簇可由任意多个Column组成,列簇支持动态扩展,无须预定义数量及类型,二进制存储,用户需自行进行类型转换

Table&Region



1. Table随着记录增多不断变大,会自动分裂成多份Splits,成为Regions
2. 一个region由[startkey,endkey)表示
3. 不同region会被Master分配给相应的RegionServer进行管理

两张特殊表:-ROOT- & .META.



.META.   记录用户表的Region信息,同时,.META.也可以有多个region
-ROOT-    记录.META.表的Region信息,但是,-ROOT-只有一个region
Zookeeper中记录了-ROOT-表的location
客户端访问数据的流程:
Client -> Zookeeper -> -ROOT- -> .META. -> 用户数据表
多次网络操作,不过client端有cache缓存

HBase 系统架构图



 

组成部件说明
Client:
使用HBase RPC机制与HMaster和HRegionServer进行通信
Client与HMaster进行通信进行管理类操作
Client与HRegionServer进行数据读写类操作

Zookeeper:
Zookeeper Quorum存储-ROOT-表地址、HMaster地址
HRegionServer把自己以Ephedral方式注册到Zookeeper中,HMaster随时感知各个HRegionServer的健康状况
Zookeeper避免HMaster单点问题

HMaster:
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master在运行
主要负责Table和Region的管理工作:
1 管理用户对表的增删改查操作
2 管理HRegionServer的负载均衡,调整Region分布
3 Region Split后,负责新Region的分布
4 在HRegionServer停机后,负责失效HRegionServer上Region迁移

HRegionServer:
HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据



 


HRegionServer管理一些列HRegion对象;
每个HRegion对应Table中一个Region,HRegion由多个HStore组成;
每个HStore对应Table中一个Column Family的存储;
Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效

HStore:
HBase存储的核心。由MemStore和StoreFile组成。
MemStore是Sorted Memory Buffer。用户写入数据的流程:




Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 出发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上
由此过程可知,HBase只是增加数据,有所得更新和删除操作,都是在Compact阶段做的,所以,用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。

HLog
引入HLog原因:
在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer以外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况
工作机制:
每个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,格式主要有两种:
1 HFile HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
2 HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile




图片解释:
HFile文件不定长,长度固定的块只有两个:Trailer和FileInfo
Trailer中指针指向其他数据块的起始点
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等
Data Index和Meta Index块记录了每个Data块和Meta块的起始点
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制
每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏

HFile里面的每个KeyValue对就是一个简单的byte数组。这个byte数组里面包含了很多项,并且有固定的结构。




KeyLength和ValueLength:两个固定的长度,分别代表Key和Value的长度
Key部分:Row Length是固定长度的数值,表示RowKey的长度,Row 就是RowKey
Column Family Length是固定长度的数值,表示Family的长度
接着就是Column Family,再接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)
Value部分没有这么复杂的结构,就是纯粹的二进制数据

HLog File




HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue


 

  • 大小: 20.4 KB
  • 大小: 28.7 KB
  • 大小: 43.1 KB
  • 大小: 29.1 KB
分享到:
评论

相关推荐

    Hbase体系架构与安装

    hbase的体系架构安装,hbase的三种安装模式,及一些操作命令

    Hbase系统架构及数据结构.md

    Hbase系统架构及数据结构,进阶篇

    HBase体系架构与安装

    ### HBase体系架构 HBase是建立在Hadoop之上的分布式、可扩展的列族数据库。它能够处理PB级别的大规模数据,并提供实时读写能力。HBase的核心设计思想源自Google的Bigtable论文。 #### HBase架构组件 1. **...

    Cassandra与HBase系统架构比对.pdf

    Cassandra与HBase系统架构比对 Cassandra与HBase是两种常用的NoSQL数据库管理系统,它们之间有着许多相似之处,但同时也存在着一些关键的差异。以下是对Cassandra与HBase系统架构的比对。 数据模型 Cassandra的...

    Cassandra与HBase系统架构比对

    ### Cassandra与HBase系统架构比对 #### 一、引言 随着大数据技术的发展,分布式数据库因其出色的扩展性和高可用性而受到了广泛的关注。在众多的NoSQL数据库中,Cassandra 和 HBase 是两种非常流行的分布式数据库...

    hbase应用架构指南

    Hbase全称为Hadoop Database,即Hbase是Hadoop的数据库,是一个分布式的存储系统。...本篇文章将重点介绍Hbase三个方面的内容:Hbase体系结构(架构)的介绍、Hbase shell的操作、Hbase的Java api的客户端操作

    Hadoop技术HBase系统架构共12页.pdf.zip

    《Hadoop技术与HBase系统架构详解》 在大数据处理领域,Hadoop和HBase是两个不可或缺的关键组件。Hadoop,作为一个开源的分布式计算框架,为海量数据的存储和处理提供了强大支持,而HBase则是在Hadoop之上构建的一...

    HBase应用架构PDF版本

    《HBase应用架构》这本书由吉恩-马克·斯帕加里撰写,中文版由陈敏敏、夏锐和陈其生翻译,深入探讨了分布式大数据存储系统HBase的架构和应用。HBase是建立在Apache Hadoop之上的一款非关系型数据库,特别适合处理...

    Cassandra与HBase系统架构比对.zip

    **Cassandra与HBase系统架构比对** Cassandra和HBase是两个广泛使用的分布式NoSQL数据库,它们在处理大规模数据存储和检索方面表现出色。两者都设计用于处理PB级的数据,支持高并发读写操作,并且是高度可扩展的。...

    HBase 系统架构

    **HBase 系统架构详解** HBase 是一个基于谷歌 Bigtable 模型设计的开源分布式数据库,属于 Apache Hadoop 生态系统的一部分。它是一个非关系型、分布式、行存储的列族数据库,专为大数据设计,适用于处理海量数据...

    hbase 资源合集 hbase 企业应用开发实战 权威指南 hbase 实战 hbase 应用架构

    《HBase资源合集》包含了四本重量级的书籍,分别是《HBase企业应用开发实战》、《HBase权威指南》、《HBase实战》以及《HBase应用架构》。这些书籍深入浅出地探讨了HBase在大数据环境中的应用与开发,是学习和掌握...

    HBase存储架构详解

    HBase存储架构详解 HBase存储架构是HBase的核心组件之一,它们之间的关系非常复杂。本文将详细解释HBase存储架构的组件、它们之间的关系,以及它们如何工作。 HBase存储架构主要包含以下几个组件: 1. HMaster:...

    HBASE架构和原理解析

    #### 六、HBase系统架构 1. **HMaster节点**:负责管理HRegionServer节点,包括负载均衡、HRegion的分配和管理等任务。此外,HMaster还执行DDL操作(如创建、删除命名空间和表)以及维护元数据。 2. **...

    HBase架构图

    **HBase架构图** HBase,全称是Apache HBase,是一个分布式的、面向列的开源数据库,基于Google的Bigtable论文设计,是Apache Hadoop项目的一部分。它为大规模数据集(数十亿行,数百万列)提供随机访问和强一致性...

    hbase安装与hbase架构说明

    在HBase的架构中,Client是用户与系统交互的接口,它通过远程过程调用(RPC)机制与HMaster和HRegionServer通信。对于数据读写操作,Client直接与HRegionServer交互,而对于表管理和元数据操作,Client则与HMaster...

    Hbase 组件 、架构

    总之,HBase的架构和组件设计体现了它作为一个分布式NoSQL数据库的优势和特点,通过合理的数据划分、负载均衡和故障转移机制,保证了数据存储的高可靠性和系统的高性能。HBase特别适用于处理大量数据的实时读写操作...

    大数据书籍-Hbase架构设计(高清)

    4. **架构设计**:深入讨论如何根据业务需求设计合理的Hbase表结构,包括数据模型的选择、索引优化、时间戳处理,以及如何处理稀疏数据。 5. **性能优化**:分享在项目实践中遇到的问题及解决方案,如Region大小...

    Hbase架构简介、实践

    #### HBase系统架构 - **HMaster**:负责Region的分配和负载均衡,管理Table Schema,以及分发关闭、刷新、压缩等管理消息。还负责集群管理,如容错、扩容、日志分裂等。 - **Client**:执行索引查找,进行数据的增...

    浅谈HBASE数据结构设计.pdf

    HBase数据结构设计知识梳理: 1. HBase概述 HBase是Apache Software Foundation旗下的一个开源的非关系型分布式数据库(NoSQL),它是Google Bigtable的开源实现,基于Hadoop文件系统(HDFS)构建。HBase的设计目标...

Global site tag (gtag.js) - Google Analytics