kafka作为分布式日志收集或系统监控服务,我们有必要在合适的场合使用它。kafka的部署包括zookeeper环境/kafka环境,同时还需要进行一些配置操作.接下来介绍如何使用kafka.
我们使用3个zookeeper实例构建zk集群,使用2个kafka broker构建kafka集群.
其中kafka为0.8V,zookeeper为3.4.5V
一.Zookeeper集群构建
我们有3个zk实例,分别为zk-0,zk-1,zk-2;如果你仅仅是测试使用,可以使用1个zk实例.(本示例基于伪分布式部署)
1) zk-0
调整配置文件:
clientPort=2181 server.0=127.0.0.1:2888:3888 server.1=127.0.0.1:2889:3889 server.2=127.0.0.1:2890:3890 ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
./zkServer.sh start
2) zk-1
调整配置文件(其他配置和zk-0一只):
clientPort=2182 ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
./zkServer.sh start
3) zk-2
调整配置文件(其他配置和zk-0一只):
clientPort=2183 ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
./zkServer.sh start
二. Kafka集群构建
因为Broker配置文件涉及到zookeeper的相关约定,因此我们先展示broker配置文件.我们使用2个kafka broker来构建这个集群环境,分别为kafka-0,kafka-1.
1) kafka-0
在config目录下修改配置文件为:
broker.id=0 port=9092 num.network.threads=2 num.io.threads=2 socket.send.buffer.bytes=1048576 socket.receive.buffer.bytes=1048576 socket.request.max.bytes=104857600 log.dir=./logs num.partitions=2 log.flush.interval.messages=10000 log.flush.interval.ms=1000 log.retention.hours=168 #log.retention.bytes=1073741824 log.segment.bytes=536870912 ##replication机制,让每个topic的partitions在kafka-cluster中备份2个 ##用来提高cluster的容错能力.. default.replication.factor=1 log.cleanup.interval.mins=10 ##zookeeper.connect指定zookeeper的地址,默认情况下将会在zk的“/”目录下 ##创建meta信息和路径,为了对znode进行归类,我们可以在connect之后追加路径,比如 ##127.0.0.1:2183/kafka ##不过需要注意,此后的producer、consumer都需要带上此根路径 zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183 zookeeper.connection.timeout.ms=1000000
因为kafka用scala语言编写,因此运行kafka需要首先准备scala相关环境。
> cd kafka-0 > ./sbt update > ./sbt package > ./sbt assembly-package-dependency
其中最后一条指令执行有可能出现异常,暂且不管。 启动kafka broker:
> JMS_PORT=9997 bin/kafka-server-start.sh config/server.properties &
因为zookeeper环境已经正常运行了,我们无需通过kafka来挂载启动zookeeper.如果你的一台机器上部署了多个kafka broker,你需要声明JMS_PORT.
2) kafka-1
broker.id=1 port=9093 ##其他配置和kafka-0保持一致
然后和kafka-0一样执行打包命令,然后启动此broker.
> JMS_PORT=9998 bin/kafka-server-start.sh config/server.properties &
仍然可以通过如下指令查看topic的"partition"/"replicas"的分布和存活情况.
> bin/kafka-list-topic.sh --zookeeper localhost:2181 topic: my-replicated-topic partition: 0 leader: 2 replicas: 1,2,0 isr: 2 topic: test partition: 0 leader: 0 replicas: 0 isr: 0
到目前为止环境已经OK了,那我们就开始展示编程实例吧。[配置参数详解]
三.项目准备
项目基于maven构建,不得不说kafka java客户端实在是太糟糕了;构建环境会遇到很多麻烦。建议参考如下pom.xml;其中各个依赖包必须版本协调一致。如果kafka client的版本和kafka server的版本不一致,将会有很多异常,比如"broker id not exists"等;因为kafka从0.7升级到0.8之后(正名为2.8.0),client与server通讯的protocol已经改变.
<dependencies> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.14</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.8.2</artifactId> <version>0.8.0</version> <exclusions> <exclusion> <groupId>log4j</groupId> <artifactId>log4j</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.8.2</version> </dependency> <dependency> <groupId>com.yammer.metrics</groupId> <artifactId>metrics-core</artifactId> <version>2.2.0</version> </dependency> <dependency> <groupId>com.101tec</groupId> <artifactId>zkclient</artifactId> <version>0.3</version> </dependency> </dependencies>
四.Producer端代码
1) producer.properties文件:此文件放在/resources目录下
#partitioner.class= ##broker列表可以为kafka server的子集,因为producer需要从broker中获取metadata ##尽管每个broker都可以提供metadata,此处还是建议,将所有broker都列举出来 ##此值,我们可以在spring中注入过来 ##metadata.broker.list=127.0.0.1:9092,127.0.0.1:9093 ##,127.0.0.1:9093 ##同步,建议为async producer.type=sync compression.codec=0 serializer.class=kafka.serializer.StringEncoder ##在producer.type=async时有效 #batch.num.messages=100
2) KafkaProducerClient.java代码样例
import java.util.ArrayList; import java.util.Collection; import java.util.List; import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; /** * User: guanqing-liu */ public class KafkaProducerClient { private Producer<String, String> inner; private String brokerList;//for metadata discovery,spring setter private String location = "kafka-producer.properties";//spring setter private String defaultTopic;//spring setter public void setBrokerList(String brokerList) { this.brokerList = brokerList; } public void setLocation(String location) { this.location = location; } public void setDefaultTopic(String defaultTopic) { this.defaultTopic = defaultTopic; } public KafkaProducerClient(){} public void init() throws Exception { Properties properties = new Properties(); properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location)); if(brokerList != null) { properties.put("metadata.broker.list", brokerList); } ProducerConfig config = new ProducerConfig(properties); inner = new Producer<String, String>(config); } public void send(String message){ send(defaultTopic,message); } public void send(Collection<String> messages){ send(defaultTopic,messages); } public void send(String topicName, String message) { if (topicName == null || message == null) { return; } KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,message); inner.send(km); } public void send(String topicName, Collection<String> messages) { if (topicName == null || messages == null) { return; } if (messages.isEmpty()) { return; } List<KeyedMessage<String, String>> kms = new ArrayList<KeyedMessage<String, String>>(); int i= 0; for (String entry : messages) { KeyedMessage<String, String> km = new KeyedMessage<String, String>(topicName,entry); kms.add(km); i++; if(i % 20 == 0){ inner.send(kms); kms.clear(); } } if(!kms.isEmpty()){ inner.send(kms); } } public void close() { inner.close(); } /** * @param args */ public static void main(String[] args) { KafkaProducerClient producer = null; try { producer = new KafkaProducerClient(); //producer.setBrokerList(""); int i = 0; while (true) { producer.send("test-topic", "this is a sample" + i); i++; Thread.sleep(2000); } } catch (Exception e) { e.printStackTrace(); } finally { if (producer != null) { producer.close(); } } } }
3) spring配置
<bean id="kafkaProducerClient" class="com.test.kafka.KafkaProducerClient" init-method="init" destroy-method="close"> <property name="zkConnect" value="${zookeeper_cluster}"></property> <property name="defaultTopic" value="${kafka_topic}"></property> </bean>
五.Consumer端
1) consumer.properties:文件位于/resources目录下
## 此值可以配置,也可以通过spring注入 ##zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183 ##,127.0.0.1:2182,127.0.0.1:2183 # timeout in ms for connecting to zookeeper zookeeper.connectiontimeout.ms=1000000 #consumer group id group.id=test-group #consumer timeout #consumer.timeout.ms=5000 auto.commit.enable=true auto.commit.interval.ms=60000
2) KafkaConsumerClient.java代码样例
package com.test.kafka; import java.nio.ByteBuffer; import java.nio.CharBuffer; import java.nio.charset.Charset; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import kafka.consumer.Consumer; import kafka.consumer.ConsumerConfig; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; import kafka.message.Message; import kafka.message.MessageAndMetadata; /** * User: guanqing-liu */ public class KafkaConsumerClient { private String groupid; //can be setting by spring private String zkConnect;//can be setting by spring private String location = "kafka-consumer.properties";//配置文件位置 private String topic; private int partitionsNum = 1; private MessageExecutor executor; //message listener private ExecutorService threadPool; private ConsumerConnector connector; private Charset charset = Charset.forName("utf8"); public void setGroupid(String groupid) { this.groupid = groupid; } public void setZkConnect(String zkConnect) { this.zkConnect = zkConnect; } public void setLocation(String location) { this.location = location; } public void setTopic(String topic) { this.topic = topic; } public void setPartitionsNum(int partitionsNum) { this.partitionsNum = partitionsNum; } public void setExecutor(MessageExecutor executor) { this.executor = executor; } public KafkaConsumerClient() {} //init consumer,and start connection and listener public void init() throws Exception { if(executor == null){ throw new RuntimeException("KafkaConsumer,exectuor cant be null!"); } Properties properties = new Properties(); properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream(location)); if(groupid != null){ properties.put("groupid", groupid); } if(zkConnect != null){ properties.put("zookeeper.connect", zkConnect); } ConsumerConfig config = new ConsumerConfig(properties); connector = Consumer.createJavaConsumerConnector(config); Map<String, Integer> topics = new HashMap<String, Integer>(); topics.put(topic, partitionsNum); Map<String, List<KafkaStream<byte[], byte[]>>> streams = connector.createMessageStreams(topics); List<KafkaStream<byte[], byte[]>> partitions = streams.get(topic); threadPool = Executors.newFixedThreadPool(partitionsNum * 2); //start for (KafkaStream<byte[], byte[]> partition : partitions) { threadPool.execute(new MessageRunner(partition)); } } public void close() { try { threadPool.shutdownNow(); } catch (Exception e) { // } finally { connector.shutdown(); } } class MessageRunner implements Runnable { private KafkaStream<byte[], byte[]> partition; MessageRunner(KafkaStream<byte[], byte[]> partition) { this.partition = partition; } public void run() { ConsumerIterator<byte[], byte[]> it = partition.iterator(); while (it.hasNext()) { // connector.commitOffsets();手动提交offset,当autocommit.enable=false时使用 MessageAndMetadata<byte[], byte[]> item = it.next(); try{ executor.execute(new String(item.message(),charset));// UTF-8,注意异常 }catch(Exception e){ // } } } public String getContent(Message message){ ByteBuffer buffer = message.payload(); if (buffer.remaining() == 0) { return null; } CharBuffer charBuffer = charset.decode(buffer); return charBuffer.toString(); } } public static interface MessageExecutor { public void execute(String message); } /** * @param args */ public static void main(String[] args) { KafkaConsumerClient consumer = null; try { MessageExecutor executor = new MessageExecutor() { public void execute(String message) { System.out.println(message); } }; consumer = new KafkaConsumerClient(); consumer.setTopic("test-topic"); consumer.setPartitionsNum(2); consumer.setExecutor(executor); consumer.init(); } catch (Exception e) { e.printStackTrace(); } finally { if(consumer != null){ consumer.close(); } } } }
3) spring配置(略)
需要提醒的是,上述LogConsumer类中,没有太多的关注异常情况,必须在MessageExecutor.execute()方法中抛出异常时的情况.
在测试时,建议优先启动consumer,然后再启动producer,这样可以实时的观测到最新的消息。
相关推荐
总的来说,"jstorm集成kafka代码实例"是一个实践性的教程,帮助开发者了解如何在Java环境中将JStorm和Kafka结合,构建实时数据处理系统。通过这个例子,你不仅可以学习到如何编写相关代码,还能理解两个组件协同工作...
6. **测试与监控**:部署并启动 Storm 拓扑后,你需要监控系统的运行状态,确保数据正确地从 Kafka 流入 Storm,并最终通过 JDBC 存储到数据库中。可以使用 Storm UI 或其他监控工具进行监控。 在“StormKafkaJdbc...
**Kafka学习实例** 在大数据实时处理领域,Apache Kafka是一个不可或缺的组件,它是一个分布式流处理平台,用于构建实时数据管道和流应用。本实例主要围绕Kafka的集群配置、生产和消费实例进行深入探讨。 首先,...
6. **Kafka Connect**:这是一个用于集成Kafka与其他系统的工具,可以方便地导入和导出数据,比如从数据库到Kafka,或者从Kafka到数据仓库。 7. **Zookeeper**:Kafka依赖Zookeeper进行集群协调,包括管理broker、...
在IT行业中,Kafka是一个非常重要的分布式流处理平台,由LinkedIn开发并贡献给了Apache软件基金会。Kafka实例是实现大规模实时数据处理...通过实践Kafka-Demo,你将更深入地了解如何在实际环境中部署和操作Kafka实例。
使用Kafka .Net库,你可以创建生产者和消费者实例,它们是与Kafka集群交互的基本单元。生产者负责生成消息并将其发布到特定的主题,而消费者则订阅这些主题并处理接收到的消息。Kafka .Net支持同步和异步消息发送,...
这个"Kafka实例"的压缩包文件很可能是提供了一个实际的开发环境,包括消费者和生产者的Java代码示例,适用于在IntelliJ IDEA这样的集成开发环境中运行的Maven项目。下面将详细讨论Kafka、消费者、生产者以及与Maven...
生产者通过API与Kafka集群交互,选择消息的存储位置,并确保数据的顺序。 **消费者**则是从Kafka主题中读取并处理数据的应用程序。Kafka支持多消费者组,每个组内的消费者可以并行消费消息,实现负载均衡。消费者...
- 集群部署时,需要配置多个Kafka和Zookeeper实例,并在配置文件中正确设置集群间的连接信息。 通过以上步骤,你可以在本地环境中成功部署Kafka和Zookeeper,为你的大数据实时处理需求打下基础。记得根据实际情况...
集群模式是Kafka的一种部署方式,它可以提供冗余和负载均衡。在集群中,多个Kafka broker(服务器)共同分发和存储消息,确保服务的高可用性和容错性。 要实现集群模式的Kafka生产者和消费者,你需要以下步骤: 1....
10. 代码实践《kafka学习代码》中可能包含了一些示例,涵盖了producer、consumer的创建、消息发送与接收、配置调整等内容,是深入理解Kafka工作原理和使用技巧的重要参考资料。 总结,Kafka作为一个分布式流处理...
- **测试与部署**:单元测试代码,然后将应用部署到生产环境。 5. **Kafka Streams的应用场景**: - **实时数据分析**:实时监控系统性能、用户行为分析等。 - **ETL流程**:从不同的数据源抽取数据,转换后加载...
- **生产者示例**:使用Kafka的Java API,编写生产者代码,通过new Producer()创建实例,然后使用send()方法发送消息到指定主题。 - **消费者示例**:创建消费者实例,通过subscribe()订阅主题,然后使用poll()...
代码实例在Kafka学习资料中可能会展示如何配置Producer和Consumer,如何创建Topic和Partition,如何设置和管理消费者组,以及如何通过Kafka事务来保证消息的原子性。这些代码示例将会是理解Kafka实际操作的基础。 ...
Scala代码中,开发者将实现一个类,该类连接到Kafka集群,创建Producer实例,并发送消息到指定的Topic。这通常涉及配置Producer的属性,如bootstrap服务器列表、序列化方式等。 `Consumer`则是接收和处理消息的一端...
// 更新Kafka配置代码 } ``` ### 6. 支持多版本JDK 为了确保应用能在不同版本的JDK上运行,需要在`pom.xml`中指定兼容的JDK版本,并在`build`部分添加`maven-compiler-plugin`配置,设置源码和目标码的兼容级别。...
【标题】"storm集成kafka插demo.zip"指的是一个演示如何将Apache Storm与Apache Kafka集成的实例项目。这个压缩包包含了一个示例,用于展示如何在Storm拓扑中消费和处理Kafka的消息。 【描述】"storm集成kafka插件...
Kafka的部署需要一个Zookeeper集群,因为Zookeeper是Kafka的核心依赖,用于协调集群中的各个节点。因此,提供的zookeeper安装包也是必不可少的。Zookeeper是一个分布式的、开放源码的协调服务,它为分布式应用提供了...
2. 创建Kafka生产者实例,配置参数如服务器地址、主题等: ```cpp KafkaProducer producer("localhost:9092"); ``` 3. 创建消息,设置消息属性: ```cpp KafkaMessage message("my-topic", "Hello, Kafka!"); ...
本文将深入探讨这一主题,介绍如何利用Apache Flink与Kafka的集成,以及如何通过Kerberos进行身份验证。 首先,Apache Flink是一个强大的开源流处理框架,它提供了对实时数据流的强大处理能力。而Kafka是一个分布式...