分别锁定this , obj1 , obj2 三个对象
public class Resource2 {
int limit = 1000;
private Food obj1 = new Food();
private Food obj2 = new Food();
public synchronized void f() {//锁定this
for (int i = 0; i < limit; i++) {
//修改obj1
obj1.setId(i);
//修改obj2
obj2.setId(i);
System.out.println(" this ");
}
}
public void g() {
synchronized (obj1) {
for (int i = 0; i < limit; i++) {
if(i != 0 && obj1.getId() != (i-1)){
//说明g方法和f方法都可以对obj1进行操作,会出现线程安全问题
System.err.println("obj1 --- "+"i:"+i+" , id:"+obj1.getId());
}
//修改obj1
obj1.setId(i);
System.out.println(" obj1 ");
}
}
}
public void h() {
synchronized (obj2) {
for (int i = 0; i < limit; i++) {
if(i != 0 && obj2.getId() != (i-1)){
//说明h方法和f方法都可以对obj1进行操作,会出现线程安全问题
System.err.println("obj2 --- "+"i:"+i+" , id:"+obj2.getId());
}
//修改obj2
obj2.setId(i);
System.out.println(" obj2 ");
}
}
}
/**
* Created on 2013-8-28
* <p>Discription:从打印的结果可以看出三个线程执行三个方法,锁定不同的对象,三个方法同时在运行,不会出现某一个线程等待某个对象的锁的情况</p>
* @return void
*/
public static void main(String[] args) {
final Resource2 rs = new Resource2();
new Thread() {
public void run() {
rs.f();
}
}.start();
new Thread() {
public void run() {
rs.g();
}
}.start();
new Thread() {
public void run() {
rs.h();
}
}.start();
}
}
public class Food {
int id;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
}
java synchronized详解
记下来,很重要。
Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。
一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。
二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。
三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。
四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。
五、以上规则对其它对象锁同样适用.
举例说明:
一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。
package ths;
public class Thread1 implements Runnable {
public void run() {
synchronized(this) {
for (int i = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + " synchronized loop " + i);
}
}
}
public static void main(String[] args) {
Thread1 t1 = new Thread1();
Thread ta = new Thread(t1, "A");
Thread tb = new Thread(t1, "B");
ta.start();
tb.start();
}
}
结果:
A synchronized loop 0
A synchronized loop 1
A synchronized loop 2
A synchronized loop 3
A synchronized loop 4
B synchronized loop 0
B synchronized loop 1
B synchronized loop 2
B synchronized loop 3
B synchronized loop 4
二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。
package ths;
public class Thread2 {
public void m4t1() {
synchronized(this) {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
}
public void m4t2() {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
public static void main(String[] args) {
final Thread2 myt2 = new Thread2();
Thread t1 = new Thread( new Runnable() { public void run() { myt2.m4t1(); } }, "t1" );
Thread t2 = new Thread( new Runnable() { public void run() { myt2.m4t2(); } }, "t2" );
t1.start();
t2.start();
}
}
结果:
t1 : 4
t2 : 4
t1 : 3
t2 : 3
t1 : 2
t2 : 2
t1 : 1
t2 : 1
t1 : 0
t2 : 0
三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。
//修改Thread2.m4t2()方法:
public void m4t2() {
synchronized(this) {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
}
结果:
t1 : 4
t1 : 3
t1 : 2
t1 : 1
t1 : 0
t2 : 4
t2 : 3
t2 : 2
t2 : 1
t2 : 0
四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。
//修改Thread2.m4t2()方法如下:
public synchronized void m4t2() {
int i = 5;
while( i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : " + i);
try {
Thread.sleep(500);
} catch (InterruptedException ie) {
}
}
}
结果:
t1 : 4
t1 : 3
t1 : 2
t1 : 1
t1 : 0
t2 : 4
t2 : 3
t2 : 2
t2 : 1
t2 : 0
五、以上规则对其它对象锁同样适用:
package ths;
public class Thread3 {
class Inner {
private void m4t1() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t1()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
private void m4t2() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
}
private void m4t1(Inner inner) {
synchronized(inner) { //使用对象锁
inner.m4t1();
}
private void m4t2(Inner inner) {
inner.m4t2();
}
public static void main(String[] args) {
final Thread3 myt3 = new Thread3();
final Inner inner = myt3.new Inner();
Thread t1 = new Thread( new Runnable() {public void run() { myt3.m4t1(inner);} }, "t1");
Thread t2 = new Thread( new Runnable() {public void run() { myt3.m4t2(inner);} }, "t2");
t1.start();
t2.start();
}
}
结果:
尽管线程t1获得了对Inner的对象锁,但由于线程t2访问的是同一个Inner中的非同步部分。所以两个线程互不干扰。
t1 : Inner.m4t1()=4
t2 : Inner.m4t2()=4
t1 : Inner.m4t1()=3
t2 : Inner.m4t2()=3
t1 : Inner.m4t1()=2
t2 : Inner.m4t2()=2
t1 : Inner.m4t1()=1
t2 : Inner.m4t2()=1
t1 : Inner.m4t1()=0
t2 : Inner.m4t2()=0
现在在Inner.m4t2()前面加上synchronized:
private synchronized void m4t2() {
int i = 5;
while(i-- > 0) {
System.out.println(Thread.currentThread().getName() + " : Inner.m4t2()=" + i);
try {
Thread.sleep(500);
} catch(InterruptedException ie) {
}
}
}
结果:
尽管线程t1与t2访问了同一个Inner对象中两个毫不相关的部分,但因为t1先获得了对Inner的对象锁,所以t2对Inner.m4t2()的访问也被阻塞,因为m4t2()是Inner中的一个同步方法。
t1 : Inner.m4t1()=4
t1 : Inner.m4t1()=3
t1 : Inner.m4t1()=2
t1 : Inner.m4t1()=1
t1 : Inner.m4t1()=0
t2 : Inner.m4t2()=4
t2 : Inner.m4t2()=3
t2 : Inner.m4t2()=2
t2 : Inner.m4t2()=1
t2 : Inner.m4t2()=0
第二篇:
synchronized 关键字,它包括两种用法:synchronized 方法和 synchronized 块。
1. synchronized 方法:通过在方法声明中加入 synchronized关键字来声明 synchronized 方法。如:
public synchronized void accessVal(int newVal);
synchronized 方法控制对类成员变量的访问:每个类实例对应一把锁,每个 synchronized 方法都必须获得调用该方法的类实例的锁方能
执行,否则所属线程阻塞,方法一旦执行,就独占该锁,直到从该方法返回时才将锁释放,此后被阻塞的线程方能获得该锁,重新进入可执行
状态。这种机制确保了同一时刻对于每一个类实例,其所有声明为 synchronized 的成员函数中至多只有一个处于可执行状态(因为至多只有
一个能够获得该类实例对应的锁),从而有效避免了类成员变量的访问冲突(只要所有可能访问类成员变量的方法均被声明为 synchronized)
。
在 Java 中,不光是类实例,每一个类也对应一把锁,这样我们也可将类的静态成员函数声明为 synchronized ,以控制其对类的静态成
员变量的访问。
synchronized 方法的缺陷:若将一个大的方法声明为synchronized 将会大大影响效率,典型地,若将线程类的方法 run() 声明为
synchronized ,由于在线程的整个生命期内它一直在运行,因此将导致它对本类任何 synchronized 方法的调用都永远不会成功。当然我们可
以通过将访问类成员变量的代码放到专门的方法中,将其声明为 synchronized ,并在主方法中调用来解决这一问题,但是 Java 为我们提供
了更好的解决办法,那就是 synchronized 块。
2. synchronized 块:通过 synchronized关键字来声明synchronized 块。语法如下:
synchronized(syncObject) {
//允许访问控制的代码
}
synchronized 块是这样一个代码块,其中的代码必须获得对象 syncObject (如前所述,可以是类实例或类)的锁方能执行,具体机
制同前所述。由于可以针对任意代码块,且可任意指定上锁的对象,故灵活性较高。
对synchronized(this)的一些理解
一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线
程必须等待当前线程执行完这个代码块以后才能执行该代码块。
二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized
(this)同步代码块。
三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)
同步代码块的访问将被阻塞。
四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个
object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。
五、以上规则对其它对象锁同样适用
http://hi.baidu.com/sunshibing/blog/item/5235b9b731d48ff430add14a.html
java中synchronized用法
打个比方:一个object就像一个大房子,大门永远打开。房子里有 很多房间(也就是方法)。
这些房间有上锁的(synchronized方法), 和不上锁之分(普通方法)。房门口放着一把钥匙(key),这把钥匙可以打开所有上锁的房间。
另外我把所有想调用该对象方法的线程比喻成想进入这房子某个 房间的人。所有的东西就这么多了,下面我们看看这些东西之间如何作用的。
在此我们先来明确一下我们的前提条件。该对象至少有一个synchronized方法,否则这个key还有啥意义。当然也就不会有我们的这个主题了。
一个人想进入某间上了锁的房间,他来到房子门口,看见钥匙在那儿(说明暂时还没有其他人要使用上锁的 房间)。于是他走上去拿到了钥匙
,并且按照自己 的计划使用那些房间。注意一点,他每次使用完一次上锁的房间后会马上把钥匙还回去。即使他要连续使用两间上锁的房间,
中间他也要把钥匙还回去,再取回来。
因此,普通情况下钥匙的使用原则是:“随用随借,用完即还。”
这时其他人可以不受限制的使用那些不上锁的房间,一个人用一间可以,两个人用一间也可以,没限制。但是如果当某个人想要进入上锁的房
间,他就要跑到大门口去看看了。有钥匙当然拿了就走,没有的话,就只能等了。
要是很多人在等这把钥匙,等钥匙还回来以后,谁会优先得到钥匙?Not guaranteed。象前面例子里那个想连续使用两个上锁房间的家伙,他
中间还钥匙的时候如果还有其他人在等钥匙,那么没有任何保证这家伙能再次拿到。 (JAVA规范在很多地方都明确说明不保证,象
Thread.sleep()休息后多久会返回运行,相同优先权的线程那个首先被执行,当要访问对象的锁被 释放后处于等待池的多个线程哪个会优先得
到,等等。我想最终的决定权是在JVM,之所以不保证,就是因为JVM在做出上述决定的时候,绝不是简简单单根据 一个条件来做出判断,而是
根据很多条。而由于判断条件太多,如果说出来可能会影响JAVA的推广,也可能是因为知识产权保护的原因吧。SUN给了个不保证 就混过去了
。无可厚非。但我相信这些不确定,并非完全不确定。因为计算机这东西本身就是按指令运行的。即使看起来很随机的现象,其实都是有规律
可寻。学过 计算机的都知道,计算机里随机数的学名是伪随机数,是人运用一定的方法写出来的,看上去随机罢了。另外,或许是因为要想弄
的确定太费事,也没多大意义,所 以不确定就不确定了吧。)
再来看看同步代码块。和同步方法有小小的不同。
1.从尺寸上讲,同步代码块比同步方法小。你可以把同步代码块看成是没上锁房间里的一块用带锁的屏风隔开的空间。
2.同步代码块还可以人为的指定获得某个其它对象的key。就像是指定用哪一把钥匙才能开这个屏风的锁,你可以用本房的钥匙;你也可以指定
用另一个房子的钥匙才能开,这样的话,你要跑到另一栋房子那儿把那个钥匙拿来,并用那个房子的钥匙来打开这个房子的带锁的屏风。
记住你获得的那另一栋房子的钥匙,并不影响其他人进入那栋房子没有锁的房间。
为什么要使用同步代码块呢?我想应该是这样的:首先对程序来讲同步的部分很影响运行效率,而一个方法通常是先创建一些局部变
量,再对这些变量做一些 操作,如运算,显示等等;而同步所覆盖的代码越多,对效率的影响就越严重。因此我们通常尽量缩小其影响范围。
如何做?同步代码块。我们只把一个方法中该同 步的地方同步,比如运算。
另外,同步代码块可以指定钥匙这一特点有个额外的好处,是可以在一定时期内霸占某个对象的key。还记得前面说过普通情况下钥
匙的使用原则吗。现在不是普通情况了。你所取得的那把钥匙不是永远不还,而是在退出同步代码块时才还。
还用前面那个想连续用两个上锁房间的家伙打比方。怎样才能在用完一间以后,继续使用另一间呢。用同步代码块吧。先创建另外
一个线程,做一个同步代码 块,把那个代码块的锁指向这个房子的钥匙。然后启动那个线程。只要你能在进入那个代码块时抓到这房子的钥匙
,你就可以一直保留到退出那个代码块。也就是说 你甚至可以对本房内所有上锁的房间遍历,甚至再sleep(10*60*1000),而房门口却还有
1000个线程在等这把钥匙呢。很过瘾吧。
在此对sleep()方法和钥匙的关联性讲一下。一个线程在拿到key后,且没有完成同步的内容时,如果被强制sleep()了,那key还一
直在 它那儿。直到它再次运行,做完所有同步内容,才会归还key。记住,那家伙只是干活干累了,去休息一下,他并没干完他要干的事。为
了避免别人进入那个房间 把里面搞的一团糟,即使在睡觉的时候他也要把那唯一的钥匙戴在身上。
最后,也许有人会问,为什么要一把钥匙通开,而不是一个钥匙一个门呢?我想这纯粹是因为复杂性问题。一个钥匙一个门当然更
安全,但是会牵扯好多问题。钥匙 的产生,保管,获得,归还等等。其复杂性有可能随同步方法的增加呈几何级数增加,严重影响效率。这也
算是一个权衡的问题吧。为了增加一点点安全性,导致效 率大大降低,是多么不可取啊。
synchronized的一个简单例子
public class TextThread {
public static void main(String[] args) {
TxtThread tt = new TxtThread();
new Thread(tt).start();
new Thread(tt).start();
new Thread(tt).start();
new Thread(tt).start();
}
}
class TxtThread implements Runnable {
int num = 100;
String str = new String();
public void run() {
synchronized (str) {
while (num > 0) {
try {
Thread.sleep(1);
} catch (Exception e) {
e.getMessage();
}
System.out.println(Thread.currentThread().getName()
+ "this is " + num--);
}
}
}
}
上面的例子中为了制造一个时间差,也就是出错的机会,使用了Thread.sleep(10)
Java对多线程的支持与同步机制深受大家的喜爱,似乎看起来使用了synchronized关键字就可以轻松地解决多线程共享数据同步问题。到底如
何?――还得对synchronized关键字的作用进行深入了解才可定论。
总的说来,synchronized关键字可以作为函数的修饰符,也可作为函数内的语句,也就是平时说的同步方法和同步语句块。如果再细的分类,
synchronized可作用于instance变量、object reference(对象引用)、static函数和class literals(类名称字面常量)身上。
在进一步阐述之前,我们需要明确几点:
A.无论synchronized关键字加在方法上还是对象上,它取得的锁都是对象,而不是把一段代码或函数当作锁――而且同步方法很可能还会被其
他线程的对象访问。
B.每个对象只有一个锁(lock)与之相关联。
C.实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制。
接着来讨论synchronized用到不同地方对代码产生的影响:
假设P1、P2是同一个类的不同对象,这个类中定义了以下几种情况的同步块或同步方法,P1、P2就都可以调用它们。
1. 把synchronized当作函数修饰符时,示例代码如下:
Public synchronized void methodAAA()
{
//….
}
这也就是同步方法,那这时synchronized锁定的是哪个对象呢?它锁定的是调用这个同步方法对象。也就是说,当一个对象P1在不同的线程中
执行这个同步方法时,它们之间会形成互斥,达到同步的效果。但是这个对象所属的Class所产生的另一对象P2却可以任意调用这个被加了
synchronized关键字的方法。
上边的示例代码等同于如下代码:
public void methodAAA()
{
synchronized (this) // (1)
{
//…..
}
}
(1)处的this指的是什么呢?它指的就是调用这个方法的对象,如P1。可见同步方法实质是将synchronized作用于object reference。――那个
拿到了P1对象锁的线程,才可以调用P1的同步方法,而对P2而言,P1这个锁与它毫不相干,程序也可能在这种情形下摆脱同步机制的控制,造
成数据混乱:(
2.同步块,示例代码如下:
public void method3(SomeObject so)
{
synchronized(so)
{
//…..
}
}
这时,锁就是so这个对象,谁拿到这个锁谁就可以运行它所控制的那段代码。当有一个明确的对象作为锁时,就可以这样写程序,但当没有明
确的对象作为锁,只是想让一段代码同步时,可以创建一个特殊的instance变量(它得是一个对象)来充当锁:
class Foo implements Runnable
{
private byte[] lock = new byte[0]; // 特殊的instance变量
Public void methodA()
{
synchronized(lock) { //… }
}
//…..
}
注:零长度的byte数组对象创建起来将比任何对象都经济――查看编译后的字节码:生成零长度的byte[]对象只需3条操作码,而Object lock
= new Object()则需要7行操作码。
3.将synchronized作用于static 函数,示例代码如下:
Class Foo
{
public synchronized static void methodAAA() // 同步的static 函数
{
//….
}
public void methodBBB()
{
synchronized(Foo.class) // class literal(类名称字面常量)
}
}
代码中的methodBBB()方法是把class literal作为锁的情况,它和同步的static函数产生的效果是一样的,取得的锁很特别,是当前调用这
个方法的对象所属的类(Class,而不再是由这个Class产生的某个具体对象了)。
记得在《Effective Java》一书中看到过将 Foo.class和 P1.getClass()用于作同步锁还不一样,不能用P1.getClass()来达到锁这个Class的
目的。P1指的是由Foo类产生的对象。
可以推断:如果一个类中定义了一个synchronized的static函数A,也定义了一个synchronized 的instance函数B,那么这个类的同一对象Obj
在多线程中分别访问A和B两个方法时,不会构成同步,因为它们的锁都不一样。A方法的锁是Obj这个对象,而B的锁是Obj所属的那个Class。
小结如下:
搞清楚synchronized锁定的是哪个对象,就能帮助我们设计更安全的多线程程序。
还有一些技巧可以让我们对共享资源的同步访问更加安全:
1. 定义private 的instance变量+它的 get方法,而不要定义public/protected的instance变量。如果将变量定义为public,对象在外界可以
绕过同步方法的控制而直接取得它,并改动它。这也是JavaBean的标准实现方式之一。
2. 如果instance变量是一个对象,如数组或ArrayList什么的,那上述方法仍然不安全,因为当外界对象通过get方法拿到这个instance对象
的引用后,又将其指向另一个对象,那么这个private变量也就变了,岂不是很危险。 这个时候就需要将get方法也加上synchronized同步,并
且,只返回这个private对象的clone()――这样,调用端得到的就是对象副本的引用了
相关推荐
在WPF中使用ItemsControl控件来实现线状图控件
语音合成_变分自编码器_对抗学习_端到端文本转语音技术_研究_1744171913.zip
内容概要:本文详细介绍了基于ThinkPHP5.1框架构建的多商户在线客服系统的源码和技术实现细节。系统采用动态域名绑定实现商户隔离,数据库分表确保数据安全,机器人聊天模块使用三级匹配策略提高应答效率,地图统计功能利用IP库和ECharts展示客户分布情况,服务器优化方面通过缓存策略和流量控制提升性能。此外,还包括了自适应布局、离线消息机制以及APP封装等内容。 适合人群:有Web开发经验的技术人员,尤其是对ThinkPHP框架有一定了解的开发者。 使用场景及目标:适用于需要搭建高性能、低成本多商户在线客服系统的公司或个人。主要目标是帮助开发者理解和掌握如何通过合理的架构设计和技术手段,在有限的硬件条件下实现高效的客户服务。 其他说明:文中提供了大量实际代码片段作为参考,有助于读者更好地理解具体实现方法。同时强调了性能优化的重要性,如缓存使用、数据库设计等方面的经验分享。
内容概要:本文详细介绍了三菱PLC FX3U与松下伺服组成的四轴控制系统的设计与实现。硬件部分由FX3U-48MT本体和两个1PG定位模块构成,每个1PG模块连接两个松下A5伺服,形成四轴系统。软件部分通过功能块(FB)进行模块化设计,涵盖JOG控制、回零、定位等功能。每个功能块内部实现了复杂的控制逻辑,如加减速曲线、方向控制等,并通过ST语言编写。此外,MCGS触摸屏用于参数配置和监控,支持CSV文件保存配方,通过MODBUS RTU协议与PLC通信。电气图纸和IO表详细记录了各信号的连接和功能,便于现场施工和维护。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是熟悉三菱PLC和松下伺服系统的用户。 使用场景及目标:适用于需要实现多轴精密控制的工业应用场景,如数控机床、自动化生产线等。目标是提供一种高效、易维护的多轴控制系统解决方案。 其他说明:文中提供了详细的代码示例和硬件配置说明,有助于理解和实施该项目。同时,强调了良好的注释习惯和模块化设计思想,提高了系统的可移植性和可维护性。
试题:线性空间的维数与子空间.docx
浅析融合城乡信息化建设-推进城乡统筹发展.docx
内容概要:本文详细介绍了如何利用蒙特卡洛方法进行电动汽车充电负荷预测。首先,针对不同类型的电动汽车(如私家车、出租车、物流车)建立了各自的出行时间、行驶里程和充电时间的概率模型。通过Python代码实现了这些模型的具体构建,包括使用正态分布、威布尔分布、泊松分布等生成样本数据。接着,通过蒙特卡洛抽样方法模拟大量车辆的充电行为,并将这些数据汇总到24小时的时间段内,形成总的充电负荷曲线。此外,文中还讨论了如何处理跨天充电、不同充电功率以及温度对电池效率的影响等问题。最后,通过可视化展示了充电负荷的峰谷特征,并探讨了模型的扩展性和灵活性。 适合人群:对电力系统规划、智能交通系统感兴趣的科研人员和技术开发者,尤其是有一定Python编程基础的人群。 使用场景及目标:适用于研究电动汽车充电负荷对电网的影响,帮助电网运营商制定合理的调度计划,评估不同政策对充电负荷的影响,以及优化充电基础设施布局。 其他说明:本文提供了详细的代码示例,便于读者理解和复现实验结果。同时强调了蒙特卡洛方法在处理不确定性和随机性方面的优势,为未来的研究提供了有价值的参考。
内容概要:本文档展示了一个基于C++的弹簧-质点系统仿真实例,详细介绍了系统的各个组成部分及其工作原理。首先定义了用于处理二维向量运算的`Vec2`类,然后创建了表示质点的`MassPoint`类,包括位置、速度、受力等属性。接着是`Spring`类,它模拟了连接两个质点的弹簧,并应用胡克定律和阻尼力来计算弹簧力。最后是`PhysicsSimulator`类,负责管理整个仿真过程,包括初始化质点和弹簧,在每个时间步长中重置所有力、应用重力、计算弹簧力并通过积分更新位置和速度。此外,还提供了简单的可视化输出。; 适合人群:对物理仿真感兴趣,有一定C++编程基础的学习者和开发者。; 使用场景及目标:①理解物理仿真中质点-弹簧系统的构建方法;②掌握如何用C++实现基本的物理计算,如力的合成与分解、欧拉积分法等;③学习如何将物理公式转化为程序代码。; 阅读建议:本实例
jw.js压缩包.zip
用信息化的手段固化管理流程范本.docx
微信群永久二维码生成系统
试题:向量的内积与正交性.docx
3dmax插件
内容概要:本文探讨了在运动控制领域中,雷赛、正运动和固高原码之间的互通性和实现方法。首先解释了为什么需要进行源码交换,即为了利用不同品牌的优势并节省开发时间和成本。接着详细介绍了交换的基本思路和技术可行性,强调了尽管不同品牌的运动控制逻辑有所区别,但在基本原理上是相通的。然后具体阐述了实现源码交换的三个主要步骤:接口标准化、底层适配层开发以及整合与测试。同时指出了在这个过程中可能遇到的问题及其解决方案,如指令集差异和硬件差异等。最后分享了一些实践经验,包括如何处理异常状态、运动参数配置的不同之处以及状态监控的实现差异。 适合人群:从事工业自动化或运动控制系统开发的专业人士,尤其是那些希望提高跨品牌兼容性的工程师。 使用场景及目标:适用于需要在同一项目中集成多种品牌运动控制器的应用场合,旨在帮助开发者更好地理解和实施不同品牌间的源码互换,从而优化系统的灵活性和效率。 其他说明:文中还提到了一些具体的编程细节和技术要点,如C++模板函数用于自动选择正确接口、JSON配置文件的品牌标识字段解析、状态转换中间件的设计等。此外,作者也分享了许多宝贵的实战经验,提醒读者注意诸如齿轮比处理、状态码对照表准备等方面的实际问题。
数字媒体资料库程序设计软件包
html-agility-pack-master
内容概要:本文详细介绍了LS-DYNA切缝药包聚能爆破源代码k文件的具体内容和应用场景。首先解释了LS-DYNA作为一款非线性动力分析软件在爆破领域的广泛运用,以及切缝药包聚能爆破技术的特点。接着深入探讨了k文件中涉及的各种关键设置和参数,如材料参数、药包设置、切缝结构建模、起爆点设置、聚能方向控制、求解控制等。每个参数和代码片段都对模拟结果有着至关重要的影响,通过不断调整和优化这些设置,可以更精准地模拟切缝药包聚能爆破过程,为实际工程应用提供可靠的支持。 适合人群:从事爆破工程、非线性动力分析的研究人员和工程师,尤其是对LS-DYNA有一定了解并希望深入了解其具体应用的专业人士。 使用场景及目标:适用于需要进行复杂爆破模拟的工程项目,旨在帮助用户掌握LS-DYNA切缝药包聚能爆破源代码k文件的编写技巧,提升模拟精度,优化爆破效果。 其他说明:文中提到的一些关键技术点,如材料参数设置、切缝结构建模、起爆点设置等,都需要仔细调整和验证,以确保模拟结果的准确性。此外,文中还提到了一些常见的错误和注意事项,有助于避免常见陷阱,提高工作效率。
内容概要:本文介绍了一种改进的视觉Transformer模型(ViT),通过引入自定义的Star_Block模块增强其性能。Star_Block模块由中心分支和多个并行分支组成,采用卷积神经网络(CNN)技术处理图像特征。具体来说,中心分支通过全局平均池化、卷积层和Sigmoid激活函数生成权重图;各并行分支则通过深度可分离卷积提取多尺度特征,并利用Softmax计算路由权重对各分支输出进行加权融合。最终,融合后的特征与中心分支生成的权重图相乘,得到增强的特征表示。在ViT模型中,Star_Block被应用于图像补丁特征提取部分,以提升模型表达能力。; 适合人群:熟悉PyTorch框架,有一定深度学习基础的研究人员或开发者。; 使用场景及目标:①研究视觉Transformer模型的改进方法;②探索卷积神经网络与Transformer架构结合的可能性;③提高图像分类任务中的模型性能。; 阅读建议:由于代码涉及较多PyTorch细节和深度学习专业知识,建议读者先掌握相关基础知识再深入学习本文内容,同时结合代码注释理解每个模块的功能。
内容概要:本文详细介绍了基于扩展卡尔曼滤波(EKF)和里程计模型的机器人定位算法,并通过MATLAB程序进行了实现和验证。首先解释了两种模型的基本原理,然后展示了具体的MATLAB代码实现,包括状态预测、观测更新以及误差计算。实验结果显示,EKF通过融合多种传感器数据,能够有效抑制误差累积,显著提高定位精度,而单纯依靠里程计会导致较大误差。文章还讨论了不同应用场景下的选择建议,并提出了未来可能的研究方向。 适合人群:从事机器人技术研究的专业人士、自动化专业学生、对机器人定位感兴趣的开发者。 使用场景及目标:适用于需要精确机器人定位的应用场景,如自主导航、服务机器人等。主要目标是帮助读者理解EKF和里程计的工作机制及其优劣,掌握MATLAB实现技巧,以便应用于实际项目中。 其他说明:文中提供了完整的MATLAB代码示例,便于读者动手实践。同时强调了EKF在处理非线性运动模型方面的优势,以及其在多传感器数据融合中的重要作用。