`
leon_a
  • 浏览: 79013 次
  • 性别: Icon_minigender_1
  • 来自: 拜月神教
社区版块
存档分类
最新评论

编译原理生成LL1预测分析表

 
阅读更多


package com.leon;

import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

/**
 * @author : Leon
 * @since : 2013-8-11
 * @see :
 */

public class LL1 {
    
    public String[] grammar_str;
    
    private int     token_i;
    
    private String  lambda = "lambda";
    
    public boolean[] mark_lambda(Grammar g) {
        boolean[] derives_lambda = new boolean[g.vocabulary.length];
        boolean changes;
        do {
            changes = false;
            for (int i = 0; i < g.productions.length; i++) {
                Production p = g.productions[i];
                if (!derives_lambda[index(p.lhs, g.vocabulary)]) {
                    if (p.rhs.length == 0) {
                        derives_lambda[index(p.lhs, g.vocabulary)] = true;
                        changes = true;
                        continue;
                    }
                    boolean rhs_derives_lambda = derives_lambda[index(p.rhs[0], g.vocabulary)];
                    for (int j = 1; j < p.rhs.length; j++) {
                        rhs_derives_lambda = rhs_derives_lambda && derives_lambda[index(p.rhs[j], g.vocabulary)];
                    }
                    if (rhs_derives_lambda) {
                        derives_lambda[index(p.lhs, g.vocabulary)] = true;
                        changes = true;
                    }
                }
            }
        }
        while (changes);
        return derives_lambda;
    }
    
    public Set<String> compute_first(String[] alpha, Set<String>[] first_set, Grammar g) {
        Set<String> result = new HashSet<String>();
        int k = alpha.length;
        if (k == 0) {
            result.add(lambda);
        }
        else {
            result.addAll(first_set[index(alpha[0], g.vocabulary)]);
            int i;
            for (i = 1; i < alpha.length && first_set[index(alpha[i - 1], g.vocabulary)].contains(lambda); i++) {
                result.addAll(first_set[index(alpha[i], g.vocabulary)]);
                if (result.contains(lambda)) {
                    result.remove(lambda);
                }
            }
            
            if (i == alpha.length && first_set[index(alpha[alpha.length - 1], g.vocabulary)].contains(lambda)) {
                result.add(lambda);
            }
        }
        return result;
    }
    
    @SuppressWarnings("unchecked")
    public Set<String>[] fill_first_set(Grammar g) {
        Set<String>[] first_set = new Set[g.vocabulary.length];
        for (int i = 0; i < first_set.length; i++) {
            if (first_set[i] == null) {
                first_set[i] = new HashSet<String>();
            }
        }
        boolean[] derives_lambda = mark_lambda(g);
        for (int i = 0; i < g.nonterminals.length; i++) {
            String nonterminal = g.nonterminals[i];
            if (derives_lambda[index(nonterminal, g.vocabulary)]) {
                first_set[index(nonterminal, g.vocabulary)].add(lambda);
            }
        }
        for (int i = 0; i < g.terminals.length; i++) {
            String terminal = g.terminals[i];
            first_set[index(terminal, g.vocabulary)].add(terminal);
            for (int j = 0; j < g.nonterminals.length; j++) {
                String nonterminal = g.nonterminals[j];
                if (have_derives(nonterminal, terminal, g)) {
                    first_set[index(nonterminal, g.vocabulary)].add(terminal);
                }
            }
        }
        boolean changes;
        do {
            changes = false;
            for (int i = 0; i < g.productions.length; i++) {
                Production p = g.productions[i];
                int before_size = first_set[index(p.lhs, g.vocabulary)].size();
                first_set[index(p.lhs, g.vocabulary)].addAll(compute_first(p.rhs, first_set, g));
                int after_size = first_set[index(p.lhs, g.vocabulary)].size();
                if (before_size != after_size) {
                    changes = true;
                }
            }
        }
        while (changes);
        return first_set;
    }
    
    @SuppressWarnings("unchecked")
    public Set<String>[] fill_follow_set(Grammar g, Set<String>[] first_set) {
        
        Set<String>[] follow_set = new Set[g.nonterminals.length];
        for (int i = 0; i < follow_set.length; i++) {
            if (follow_set[i] == null) {
                follow_set[i] = new HashSet<String>();
            }
        }
        follow_set[index(g.start_symbol, g.nonterminals)].add(lambda);
        boolean changes;
        do {
            changes = false;
            for (int i = 0; i < g.productions.length; i++) {
                Production p = g.productions[i];
                for (int j = 0; j < p.rhs.length; j++) {
                    String symbol = p.rhs[j];
                    if (index(symbol, g.nonterminals) != -1) {
                        String[] beta = build_beta(j, p.rhs);
                        Set<String> compute_first = compute_first(beta, first_set, g);
                        Set<String> set = new HashSet<String>(compute_first);
                        set.remove(lambda);
                        int before_size = follow_set[index(symbol, g.nonterminals)].size();
                        follow_set[index(symbol, g.nonterminals)].addAll(set);
                        if (compute_first.contains(lambda)) {
                            follow_set[index(symbol, g.nonterminals)].addAll(follow_set[index(p.lhs, g.nonterminals)]);
                        }
                        int after_size = follow_set[index(symbol, g.nonterminals)].size();
                        if (before_size != after_size) {
                            changes = true;
                        }
                    }
                }
            }
        }
        while (changes);
        return follow_set;
    }
    
    public void predict(Production p, Set<String>[] first_set, Set<String>[] follow_set, Grammar g, int p_index,
                        int[][] m) {
        Set<String> set = new HashSet<String>();
        for (int i = 0; i < p.rhs.length; i++) {
            if (first_set[index(p.rhs[i], g.vocabulary)].contains(lambda)) {
                continue;
            }
            else {
                set.addAll(first_set[index(p.rhs[i], g.vocabulary)]);
                break;
            }
        }
        if (set.size() == 0) {
            set.addAll(follow_set[index(p.lhs, g.nonterminals)]);
        }
        for (Iterator<String> iterator = set.iterator(); iterator.hasNext();) {
            String symbol = iterator.next();
            m[index(symbol, g.terminals)][index(p.lhs, g.nonterminals)] = p_index;
        }
    }
    
    public void gen_action(String[] symbol, Grammar g) {
        if (symbol.length == 0) {
            System.out.println("\t\t\t/* null */");
        }
        else {
            for (int i = 0; i < symbol.length; i++) {
                if (is_terminal(symbol[i], g)) {
                    System.out.println("\t\t\tmatch(\"" + symbol[i] + "\");");
                }
                else {
                    System.out.println("\t\t\t" + symbol[i] + "();");
                }
            }
        }
    }
    
    public void make_parsing_proc(String nonterminal, int[][] m, Grammar g) {
        System.out.println("public void " + nonterminal + "(){");
        System.out.println("\tString tok = current_token();");
        System.out.println("\tswitch(tok){");
        for (int j = 0; j < g.terminals.length; j++) {
            for (int i = 0; i < g.nonterminals.length; i++) {
                if (g.nonterminals[i].equals(nonterminal)) {
                    if (m[j][i] > 0) {
                        System.out.println("\t\tcase \"" + g.terminals[j]+"\":");
                        Production selected_p = g.productions[m[j][i] - 1];
                        gen_action(selected_p.rhs, g);
                        System.out.println("\t\t\tbreak;");
                    }
                    break;
                }
            }
        }
        System.out.println("\t\tdefault:");
        System.out.println("\t\t\tsyntax_error(tok);");
        System.out.println("\t\t\tbreak;");
        System.out.println("\t}");
        System.out.println("}");
    }
    
    public void ll1_driver(Grammar g, int[][] m) {
        Stack<String> stack = new Stack<String>();
        stack.push(g.start_symbol);
        String a = next_token();
        while (!stack.is_empty()) {
            System.out.println(stack);
            String symbol = stack.pop();
            if (is_nonterminal(symbol, g) && m[index(a, g.terminals)][index(symbol, g.nonterminals)] > 0) {
                Production p = g.productions[m[index(a, g.terminals)][index(symbol, g.nonterminals)] - 1];
                String[] rhs = p.rhs;
                for (int i = rhs.length-1; i >= 0; i--) {
                    stack.push(rhs[i]);
                }
            }
            else if (symbol.equals(a)) {
                a = next_token();
            }
            else {
                System.out.println("syntax error");
            }
        }
    }
    
    public String next_token() {
        if(token_i<grammar_str.length){
            return grammar_str[token_i++];
        }
        return null;
    }
    
    private boolean is_nonterminal(String symbol, Grammar g) {
        for (int i = 0; i < g.nonterminals.length; i++) {
            if (g.nonterminals[i].equals(symbol)) {
                return true;
            }
        }
        return false;
    }
    
    private boolean is_terminal(String symbol, Grammar g) {
        for (int i = 0; i < g.terminals.length; i++) {
            if (g.terminals[i].equals(symbol)) {
                return true;
            }
        }
        return false;
    }
    
    private boolean have_derives(String nonterminal, String terminal, Grammar g) {
        for (int i = 0; i < g.productions.length; i++) {
            Production production = g.productions[i];
            if (production.lhs.equals(nonterminal) && production.rhs.length > 0 && production.rhs[0].equals(terminal)) {
                return true;
            }
        }
        return false;
    }
    
    private int index(String symbol, String[] vocabulary) {
        for (int i = 0; i < vocabulary.length; i++) {
            if (symbol.equals(vocabulary[i])) {
                return i;
            }
        }
        return -1;
    }
    
    private String[] build_beta(int j, String[] rhs) {
        String[] result = new String[rhs.length - (j + 1)];
        int k = 0;
        for (int i = j + 1; i < rhs.length; i++) {
            result[k++] = rhs[i];
        }
        return result;
    }
    
}



package com.leon;

import java.util.Set;


/** @author : Leon
 * @since   : 2013-8-11
 * @see    : 
 */

public class Main {
    public static void main(String[] args) {
        new Main().do_third_gammar();
    }
    
    public void do_first_gammar(){
        LL1 c= new LL1();
        Grammar g = new Grammar();
        g.nonterminals = new String[]{"S","B","C"};
        g.terminals = new String[]{"a","b","c","d","e"};
        g.start_symbol = "S";
        g.vocabulary = new String[]{"S","B","C","a","b","c","d","e"};
        Production p1 = new Production("S",new String[]{"a","S","e"});
        Production p2 = new Production("S",new String[]{"B"});
        Production p3 = new Production("B",new String[]{"b","B","e"});
        Production p4 = new Production("B",new String[]{"C"});
        Production p5 = new Production("C",new String[]{"c","C","e"});
        Production p6 = new Production("C",new String[]{"d"});
        g.productions = new Production[]{p1,p2,p3,p4,p5,p6};
        Set<String>[] first_set = c.fill_first_set(g);
        for (int i = 0; i < first_set.length; i++) {
            Set<String> set = first_set[i];
            System.out.println(set);
        }
        Set<String>[] follow_set = c.fill_follow_set(g, first_set);
        for (int i = 0; i < follow_set.length; i++) {
            Set<String> set = follow_set[i];
            System.out.println(set);
        }
    }
    
    public void do_second_gammar(){
        LL1 c= new LL1();
        Grammar g = new Grammar();
        g.nonterminals = new String[]{"S","A","B"};
        g.terminals = new String[]{"a","b","c"};
        g.start_symbol = "S";
        g.vocabulary = new String[]{"S","A","B","a","b","c"};
        Production p1 = new Production("S",new String[]{"A","B","c"});
        Production p2 = new Production("A",new String[]{"a"});
        Production p3 = new Production("A",new String[]{});
        Production p4 = new Production("B",new String[]{"b"});
        Production p5 = new Production("B",new String[]{});
        g.productions = new Production[]{p1,p2,p3,p4,p5};
        Set<String>[] first_set = c.fill_first_set(g);
        for (int i = 0; i < first_set.length; i++) {
            Set<String> set = first_set[i];
            System.out.println(set);
        }
        Set<String>[] follow_set = c.fill_follow_set(g, first_set);
        for (int i = 0; i < follow_set.length; i++) {
            Set<String> set = follow_set[i];
            System.out.println(set);
        }
    }
    
    public void do_third_gammar(){
        LL1 c= new LL1();
        Grammar g = new Grammar();
        g.nonterminals = new String[]{"program","statement_list","statement","statement_tail","expression","id_list","expr_list","id_tail","expr_tail","primary","primary_tail","add_op","system_goal"};
        g.terminals = new String[]{"ID","INTLIT",":=",",",";","+","*","(",")","begin","end","read","write","$"};
        g.start_symbol = "system_goal";
        g.vocabulary = new String[]{"program","statement_list","statement","statement_tail","expression","id_list","expr_list","id_tail","expr_tail","primary","primary_tail","add_op","system_goal","ID","INTLIT",":=",",",";","+","*","(",")","begin","end","read","write","$"};
        Production p1 = new Production("program",new String[]{"begin","statement_list","end"});
        Production p2 = new Production("statement_list",new String[]{"statement","statement_tail"});
        Production p3 = new Production("statement_tail",new String[]{"statement","statement_tail"});
        Production p4 = new Production("statement_tail",new String[]{});
        Production p5 = new Production("statement",new String[]{"ID",":=","expression",";"});
        Production p6 = new Production("statement",new String[]{"read","(","id_list",")",";"});
        Production p7 = new Production("statement",new String[]{"write","(","expr_list",")",";"});
        Production p8 = new Production("id_list",new String[]{"ID","id_tail"});
        Production p9 = new Production("id_tail",new String[]{",","ID","id_tail"});
        Production p10 = new Production("id_tail",new String[]{});
        Production p11 = new Production("expr_list",new String[]{"expression","expr_tail"});
        Production p12 = new Production("expr_tail",new String[]{",","expression","expr_tail"});
        Production p13 = new Production("expr_tail",new String[]{});
        Production p14 = new Production("expression",new String[]{"primary","primary_tail"});
        Production p15 = new Production("primary_tail",new String[]{"add_op","primary","primary_tail"});
        Production p16 = new Production("primary_tail",new String[]{});
        Production p17 = new Production("primary",new String[]{"(","expression",")"});
        Production p18 = new Production("primary",new String[]{"ID"});
        Production p19 = new Production("primary",new String[]{"INTLIT"});
        Production p20 = new Production("add_op",new String[]{"+"});
        Production p21 = new Production("add_op",new String[]{"*"});
        Production p22 = new Production("system_goal",new String[]{"program","$"});
        g.productions = new Production[]{p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,p19,p20,p21,p22};
        Set<String>[] first_set = c.fill_first_set(g);
        for (int i = 0; i < first_set.length; i++) {
            Set<String> set = first_set[i];
            System.out.println(set);
        }
        System.out.println("===============================");
        Set<String>[] follow_set = c.fill_follow_set(g, first_set);
        for (int i = 0; i < follow_set.length; i++) {
            Set<String> set = follow_set[i];
            System.out.println(set);
        }
        System.out.println("===============================");
        System.out.println(g.terminals.length);
        System.out.println(g.nonterminals.length);
        System.out.println("===============================");
        int[][] m = new int[g.terminals.length][g.nonterminals.length];
        for (int i = 0; i < g.productions.length; i++) {
            c.predict(g.productions[i], first_set, follow_set, g, i+1, m);
        }
        for (int i = 0; i < m.length; i++) {
            for (int j = 0; j < m[i].length; j++) {
                System.out.print(m[i][j]+",");
            }
            System.out.println();
        }
        
        for (int i = 0; i < g.nonterminals.length; i++) {
            c.make_parsing_proc(g.nonterminals[i], m, g);
        }
        c.grammar_str = "begin ID := ID * INTLIT + ID ; end $".split(" ");
        for (int i = 0; i < c.grammar_str.length; i++) {
            System.out.println(c.grammar_str[i]);
        }
        c.ll1_driver(g, m);
    }
}
  • src.7z (4 KB)
  • 下载次数: 11
分享到:
评论

相关推荐

    编译原理-LL1文法分析-java

    LL1文法分析是一种自左至右(L)的分析方法,它从输入串的最左边开始,使用一种预测分析表(L)来决定下一步的动作,同时处理的符号仅依赖于当前分析栈的顶部一个符号(1)。这种分析方法简单且易于实现,广泛应用于...

    编译原理课设 LL1语法分析器

    1. **分析表的生成**:这部分代码会根据给定的文法生成LL1分析表,涉及到First集和Follow集的计算,以及分析表的填充。 2. **解析函数**:这个函数接收输入字符串,按照分析表进行解析,返回解析结果或者抛出错误...

    编译原理LL1语法分析器

    在压缩包“ll1”中,可能包含了实现这些步骤的代码或工具,可能包括文法输入接口、计算集合的算法、生成预测分析表的逻辑以及实际的分析程序。通过学习和理解这些内容,你可以深入掌握编译原理中LL1分析器的设计与...

    编译原理LL1语法分析器(C++版)源代码.zip

    在编程领域,编译原理是理解计算机语言处理过程的关键部分,它涉及词法分析、语法分析、语义分析以及代码生成等步骤。本项目聚焦于其中的语法分析,特别是LL1分析器的实现,这是一种自顶向下、左到右的语法分析方法...

    LL1文法识别 词法分析程序 编译原理程序

    通过这个程序,学习者可以深入理解编译原理中的基本概念,包括如何设计词法分析器、如何构建LL1文法的预测分析表,以及如何实现这些理论在实际编程中的应用。这对于计算机科学和软件工程专业的学生来说是非常宝贵的...

    编译原理-LL1文法分析--java

    3. **创建预测分析表**:根据First集和FOLLOW集,生成预测分析表。这一步通常需要解决冲突,如果存在冲突,意味着文法不是LL1的,需要调整文法。 4. **编写解析器**:使用Java编写解析器,依据预测分析表进行解析。...

    编译原理之LL1文法的java代码实现

    在这个实验的压缩包中,"LL1"文件可能包含了实现这些功能的Java源代码,包括文法定义、集合计算、预测分析表生成和解析函数等。通过阅读和理解这些代码,可以深入学习LL1文法分析器的工作原理,并提升对编译原理的...

    编译原理C语言LL1语法分析器的简单实现.zip

    3. **构造预测分析表**:预测分析表是LL1分析器的核心,它记录了每个非终结符在当前输入符号下的可能展开。每个表项包含一组产生式,当分析器遇到特定的输入符号时,会按照这些产生式进行解析。 4. **C语言实现**:...

    编译原理LL1词法分析器.rar_LL1 词法分析_LL1分析程序_编译原理LL1_编译程序

    而“编译原理LL1词法分析器”则是实际的VC工程文件,包含源代码和编译设置,可以作为学习和实践的实例。 了解和掌握LL1词法分析器的原理和实现,对于理解编译器的工作机制具有重要意义。在实际编程中,我们可以利用...

    编译原理课程设计LL1文法

    总的来说,这个课程设计项目涵盖了编译原理的核心概念,包括文法的分析、预测分析表的构造和使用,以及如何实现这些理论概念的软件工具。通过实际操作,学习者不仅可以深入理解LL1文法,还能锻炼编程和软件设计能力...

    编译原理LL1文法MFC

    在"编译原理开发设计,采用LL1文法,界面MFC设计"的项目中,我们可以想象这样一个场景:开发者使用LL1文法来解析特定的编程语言,构建一个前端分析器,这个分析器可以有效地识别和处理源代码的结构。同时,利用MFC库...

    编译原理 LL1语法分析器(JAVA写的)

    2. 根据文法规则生成LL1解析表。 3. 编写词法分析器,识别输入的字符流。 4. 实现LL1解析器,根据解析表进行分析。 5. 设计并实现主程序,接收用户输入,调用词法分析器和LL1解析器,输出解析结果。 文件"sa"可能是...

    编译原理LL1语法分析器(含消除左递归)

    LL(1)语法分析器是一种常用的自顶向下预测分析方法,尤其适用于简单、易于理解的文法。 首先,我们来详细了解一下LL(1)分析器。"LL"代表“Left-to-Right扫描输入串”和“Leftmost derivation”,即从左向右读取...

    编译原理-语法分析 LL1

    在进行实验时,你需要首先理解文法规则,然后构造First集和Follow集,接着生成LL1分析表。最后,使用SyntaxParser对源代码进行解析,检查是否有错误或不符合文法的部分。这个过程可以帮助你深入理解编译器如何理解和...

    编译原理LL1分析(c++)

    4. **LL1分析表生成**:根据文法的非终结符、产生式、FOLLOW集和FIRST集,构建LL1分析表。 5. **解析引擎**:编写解析函数,使用LL1分析表进行自顶向下的递归下降解析,处理输入的终结符流。 6. **错误处理**:当...

    编译原理语法分析LL1文法c++代码

    LL1文法是一种前向预测的自顶向下语法分析方法。它要求文法必须是无二义的,并且对于每个非终结符在当前输入符号集上,只有一个产生式的第一项。LL1解析器通过构造解析表来实现,这个表指示了在遇到特定输入符号时应...

    编译原理的语法分析——LL(1)分析表的实现.docx

    实验旨在加深对LL(1)分析方法的理解,包括文法等价变换、LL(1)分析表的构造以及输入串的分析过程。 首先,LL(1)分析的核心在于其解析决策基于当前输入符号和栈顶符号的Lookahead集(最多一个符号,即“1”),并且...

    编译原理_LL(1)分析表的生成

    在提供的文档《编译原理_LL(1)分析表的生成.doc》中,可能包含了使用某种编程语言(如C++或Python)实现的LL(1)分析表生成算法。通过阅读源代码,可以了解具体的实现细节,包括数据结构的选择、算法逻辑等。 5. ...

    编译原理LL1文法分析,txt输入,屏幕显示

    - 接着,根据First集和Follow集构建预测分析表,如果First(A)与Follow(A)有交集,且交集中包含某个非终结符B,则在分析表的(A,B)位置标记“YES”,表示可以产生B;如果交集包含某个终结符c,则在(A,c)位置标记...

Global site tag (gtag.js) - Google Analytics