Google Brain之父,斯坦福大学教授Andrew Ng带来的机器学习课程。
另注:Andrew同时也是coursera的创始人。
https://www.coursera.org/course/ml
About the Course
Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI.
This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
FAQ
What is the format of the class?
The class will consist of lecture videos, which are broken into small chunks, usually between eight and twelve minutes each. Some of these may contain integrated quiz questions. There will also be standalone quizzes that are not part of video lectures, and programming assignments.
How much programming background is needed for the course?
The course includes programming assignments and some programming background will be helpful.
Do I need to buy a textbook for the course?
No, it is self-contained.
Will I get a statement of accomplishment after completing this class?
Yes. Students who successfully complete the class will receive a statement of accomplishment signed by the instructo
相关推荐
总的来说,"Machine-Learning-by-Stanford-University-Python"项目提供了一个极好的学习平台,通过Python实践,深入浅出地讲解了机器学习的核心概念。无论你是否已经涉足这个领域,都能从中受益匪浅,为自己的机器...
离散控制Matlab代码斯坦福大学的课程机器学习 吴安国:Coursera-机器学习 [内容] 介绍 1.1引言 监督学习 1.2具有一个变量的线性回归 1.3线性代数复习 2.1环境设置说明 2.2具有多个变量的线性回归 ...
《Python中的Coursera Andrew Ng机器学习作业解析》 机器学习是现代计算机科学的一个关键领域,而斯坦福大学的Andrew Ng教授无疑是这个领域的权威之一。他的Coursera在线课程为全球学习者提供了深入理解机器学习...
Andrew Ng Stanford University 机器学习是一种让计算机在没有事先明确地编程的情况下做出正确反应的科学 在过去的十年中 机器学习已经给我们在自动驾驶汽车 实用语音识别 有效的网络搜索 以及提高人类基因组的认识...
matlab代码中向量的点乘 Python程式设计作业 该存储库包含Andrew Ng教授教的编程作业的python版本。 这也许是最受欢迎的在线机器学习入门课程。 除了受欢迎之外,它还是任何有兴趣的学生可以上的最好的机器学习课程...
this is a text book used in Stanford university
斯坦福大学的吴安德(Andrew Ng)提供的Coursera机器学习 成就声明: : (取得成绩:100.0%) • 介绍 •具有一个变量的线性回归 •线性代数复习 •复习问题(针对本周的主题) •具有多个变量的线性回归 ...
总之,Stanford University的CS229机器学习课程是一份宝贵的入门资源,它不仅介绍了机器学习的基本概念和算法,还注重培养解决问题和实际应用的能力。无论你是初涉机器学习的新人,还是希望深入研究的学者,都能从中...
Ng)-Coursera-斯坦福大学(Stanford University))。 已实现了有监督和无监督学习算法的典型示例(请参见摘要)。 每个实施方案均在课程中进行了验证。 因此,此回购是复习某些最新机器学习技术基础知识的好资源。...
researcher in machine learning and is renowned for his book Learning from Good and Bad Data [4]. He introduced me to the research of Prof. John Koza of Stanford University. I still remember the ...
斯坦福大学的机器学习(Coursera) 吴国安教授介绍“机器学习是使计算机在不经过明确编程的情况下运行的科学。...内容演讲幻灯片编程项目证书My certificate : : 参考Machine Learning - Stanford : :
Kaelbling's book is one of the few in the machine learning field that will be regarded as a landmark. (Nils J. Nilsson, Kumagai Professor of Engineering, Stanford University) Learning in Embedded ...
Stanford University 机器学习是一种让计算机在没有事先明确地编程的情况下做出正确反应的科学 在过去的十年中 机器学习已经给我们在自动驾驶汽车 实用语音识别 有效的网络搜索 以及提高人类基因组的认识方面带来...
Deeplearning深度学习笔记.pdf可能包含了对卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、生成对抗网络(GAN)等的讲解。深度学习已经在图像识别、语音识别、自然语言处理等领域取得了突破性...
该存储库包含由Stanford University创建的Andrew Ng在Coursera上的机器学习课程的某些编程作业的python实现。 编程练习1:线性回归在本练习中,您将实现线性回归并了解它如何在现实世界的数据集上工作。 编程练习...
The dataset is a large new cardiac Motion Video Data Resource for Medical Machine Learning by Stanford University. 本数据集由斯坦福大学出品,为医学机器学习提供心脏运动动态数据。 STANFORD UNIVERSITY ...
- “Machine-Learning-Stanford-University-Coursera_master.zip”可能包含课程的MATLAB代码示例、数据集和课程笔记,是深入学习的宝贵资源。 - “说明.txt”则可能提供解压后的文件结构和使用指南,帮助用户更好...