转自:http://www.cnblogs.com/panfeng412/archive/2011/11/06/2237857.html
1. 段错误是什么
一句话来说,段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。这里贴一个对于“段错误”的准确定义(参考Answers.com):
A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors. Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy. On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.
2. 段错误产生的原因
2.1 访问不存在的内存地址
#include<stdio.h> #include<stdlib.h> void main() { int *ptr = NULL; *ptr = 0; }
2.2 访问系统保护的内存地址
#include<stdio.h> #include<stdlib.h> void main() { int *ptr = (int *)0; *ptr = 100; }
2.3 访问只读的内存地址
#include<stdio.h> #include<stdlib.h> #include<string.h> void main() { char *ptr = "test"; strcpy(ptr, "TEST"); }
2.4 栈溢出
#include<stdio.h>
#include<stdlib.h>
void main()
{
main();
}
等等其他原因。
3. 段错误信息的获取
程序发生段错误时,提示信息很少,下面有几种查看段错误的发生信息的途径。
3.1 dmesg
dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、指令指针地址、堆栈指针地址、错误代码、错误原因等。以程序2.3为例:
panfeng@ubuntu:~/segfault$ dmesg [ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]
3.2 -g
使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:
panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c
3.3 nm
使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:
panfeng@ubuntu:~/segfault$ nm segfault3 08049f20 d _DYNAMIC 08049ff4 d _GLOBAL_OFFSET_TABLE_ 080484dc R _IO_stdin_used w _Jv_RegisterClasses 08049f10 d __CTOR_END__ 08049f0c d __CTOR_LIST__ 08049f18 D __DTOR_END__ 08049f14 d __DTOR_LIST__ 080484ec r __FRAME_END__ 08049f1c d __JCR_END__ 08049f1c d __JCR_LIST__ 0804a014 A __bss_start 0804a00c D __data_start 08048490 t __do_global_ctors_aux 08048360 t __do_global_dtors_aux 0804a010 D __dso_handle w __gmon_start__ 0804848a T __i686.get_pc_thunk.bx 08049f0c d __init_array_end 08049f0c d __init_array_start 08048420 T __libc_csu_fini 08048430 T __libc_csu_init U __libc_start_main@@GLIBC_2.0 0804a014 A _edata 0804a01c A _end 080484bc T _fini 080484d8 R _fp_hw 080482bc T _init 08048330 T _start 0804a014 b completed.6990 0804a00c W data_start 0804a018 b dtor_idx.6992 080483c0 t frame_dummy 080483e4 T main U memcpy@@GLIBC_2.0
3.4 ldd
使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:
panfeng@ubuntu:~/segfault$ ldd ./segfault3 linux-gate.so.1 => (0x00e08000) libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000) /lib/ld-linux.so.2 (0x00482000)
4. 段错误的调试方法
4.1 使用printf输出信息
这个是看似最简单但往往很多情况下十分有效的调试方式,也许可以说是程序员用的最多的调试方式。简单来说,就是在程序的重要代码附近加上像printf这类输出信息,这样可以跟踪并打印出段错误在代码中可能出现的位置。
为了方便使用这种方法,可以使用条件编译指令#ifdef DEBUG和#endif把printf函数包起来。这样在程序编译时,如果加上-DDEBUG参数就能查看调试信息;否则不加该参数就不会显示调试信息。
4.2 使用gcc和gdb
4.2.1 调试步骤
1、为了能够使用gdb调试程序,在编译阶段加上-g参数,以程序2.3为例:
panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c
2、使用gdb命令调试程序:
panfeng@ubuntu:~/segfault$ gdb ./segfault3 GNU gdb (GDB) 7.0-ubuntu Copyright (C) 2009 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "i486-linux-gnu". For bug reporting instructions, please see: <http://www.gnu.org/software/gdb/bugs/>... Reading symbols from /home/panfeng/segfault/segfault3...done. (gdb)
3、进入gdb后,运行程序:
(gdb) run
Starting program: /home/panfeng/segfault/segfault3
Program received signal SIGSEGV, Segmentation fault.
0x001a306a in memcpy () from /lib/tls/i686/cmov/libc.so.6
(gdb)
从输出看出,程序2.3收到SIGSEGV信号,触发段错误,并提示地址0x001a306a、调用memcpy报的错,位于/lib/tls/i686/cmov/libc.so.6库中。
4、完成调试后,输入quit命令退出gdb:
(gdb) quit A debugging session is active. Inferior 1 [process 3207] will be killed. Quit anyway? (y or n) y
4.2.2 适用场景
1、仅当能确定程序一定会发生段错误的情况下使用。
2、当程序的源码可以获得的情况下,使用-g参数编译程序。
3、一般用于测试阶段,生产环境下gdb会有副作用:使程序运行减慢,运行不够稳定,等等。
4、即使在测试阶段,如果程序过于复杂,gdb也不能处理。
4.3 使用core文件和gdb
在4.2节中提到段错误会触发SIGSEGV信号,通过man 7 signal,可以看到SIGSEGV默认的handler会打印段错误出错信息,并产生core文件,由此我们可以借助于程序异常退出时生成的core文件中的调试信息,使用gdb工具来调试程序中的段错误。
4.3.1 调试步骤
1、在一些Linux版本下,默认是不产生core文件的,首先可以查看一下系统core文件的大小限制:
panfeng@ubuntu:~/segfault$ ulimit -c 0
2、可以看到默认设置情况下,本机Linux环境下发生段错误时不会自动生成core文件,下面设置下core文件的大小限制(单位为KB):
panfeng@ubuntu:~/segfault$ ulimit -c 1024 panfeng@ubuntu:~/segfault$ ulimit -c 1024
3、运行程序2.3,发生段错误生成core文件:
panfeng@ubuntu:~/segfault$ ./segfault3 段错误 (core dumped)
4、加载core文件,使用gdb工具进行调试:
panfeng@ubuntu:~/segfault$ gdb ./segfault3 ./core GNU gdb (GDB) 7.0-ubuntu Copyright (C) 2009 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "i486-linux-gnu". For bug reporting instructions, please see: <http://www.gnu.org/software/gdb/bugs/>... Reading symbols from /home/panfeng/segfault/segfault3...done. warning: Can't read pathname for load map: 输入/输出错误. Reading symbols from /lib/tls/i686/cmov/libc.so.6...(no debugging symbols found)...done. Loaded symbols for /lib/tls/i686/cmov/libc.so.6 Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done. Loaded symbols for /lib/ld-linux.so.2 Core was generated by `./segfault3'. Program terminated with signal 11, Segmentation fault. #0 0x0018506a in memcpy () from /lib/tls/i686/cmov/libc.6
从输出看出,同4.2.1中一样的段错误信息。
5、完成调试后,输入quit命令退出gdb:
(gdb) quit
4.3.2 适用场景
1、适合于在实际生成环境下调试程序的段错误(即在不用重新发生段错误的情况下重现段错误)。
2、当程序很复杂,core文件相当大时,该方法不可用。
4.4 使用objdump
4.4.1 调试步骤
1、使用dmesg命令,找到最近发生的段错误输出信息:
panfeng@ubuntu:~/segfault$ dmesg ... ... [17257.502808] segfault3[3320]: segfault at 80484e0 ip 0018506a sp bfc1cd6c error 7 in libc-2.10.1.so[110000+13e000]
其中,对我们接下来的调试过程有用的是发生段错误的地址:80484e0和指令指针地址:0018506a。
2、使用objdump生成二进制的相关信息,重定向到文件中:
panfeng@ubuntu:~/segfault$ objdump -d ./segfault3 > segfault3Dump
其中,生成的segfault3Dump文件中包含了二进制文件的segfault3的汇编代码。
3、在segfault3Dump文件中查找发生段错误的地址:
panfeng@ubuntu:~/segfault$ grep -n -A 10 -B 10 "80484e0" ./segfault3Dump 121- 80483df: ff d0 call *%eax 122- 80483e1: c9 leave 123- 80483e2: c3 ret 124- 80483e3: 90 nop 125- 126-080483e4 <main>: 127- 80483e4: 55 push %ebp 128- 80483e5: 89 e5 mov %esp,%ebp 129- 80483e7: 83 e4 f0 and $0xfffffff0,%esp 130- 80483ea: 83 ec 20 sub $0x20,%esp 131: 80483ed: c7 44 24 1c e0 84 04 movl $0x80484e0,0x1c(%esp) 132- 80483f4: 08 133- 80483f5: b8 e5 84 04 08 mov $0x80484e5,%eax 134- 80483fa: c7 44 24 08 05 00 00 movl $0x5,0x8(%esp) 135- 8048401: 00 136- 8048402: 89 44 24 04 mov %eax,0x4(%esp) 137- 8048406: 8b 44 24 1c mov 0x1c(%esp),%eax 138- 804840a: 89 04 24 mov %eax,(%esp) 139- 804840d: e8 0a ff ff ff call 804831c <memcpy@plt> 140- 8048412: c9 leave 141- 8048413: c3 ret
通过对以上汇编代码分析,得知段错误发生main函数,对应的汇编指令是movl $0x80484e0,0x1c(%esp),接下来打开程序的源码,找到汇编指令对应的源码,也就定位到段错误了。
4.4.2 适用场景
1、不需要-g参数编译,不需要借助于core文件,但需要有一定的汇编语言基础。
2、如果使用了gcc编译优化参数(-O1,-O2,-O3)的话,生成的汇编指令将会被优化,使得调试过程有些难度。
4.5 使用catchsegv
catchsegv命令专门用来扑获段错误,它通过动态加载器(ld-linux.so)的预加载机制(PRELOAD)把一个事先写好的库(/lib/libSegFault.so)加载上,用于捕捉断错误的出错信息。
panfeng@ubuntu:~/segfault$ catchsegv ./segfault3
Segmentation fault (core dumped)
*** Segmentation fault
Register dump:
EAX: 00000000 EBX: 00fb3ff4 ECX: 00000002 EDX: 00000000
ESI: 080484e5 EDI: 080484e0 EBP: bfb7ad38 ESP: bfb7ad0c
EIP: 00ee806a EFLAGS: 00010203
CS: 0073 DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b
Trap: 0000000e Error: 00000007 OldMask: 00000000
ESP/signal: bfb7ad0c CR2: 080484e0
Backtrace:
/lib/libSegFault.so[0x3b606f]
??:0(??)[0xc76400]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xe89b56]
/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8048351]
Memory map:
00258000-00273000 r-xp 00000000 08:01 157 /lib/ld-2.10.1.so
00273000-00274000 r--p 0001a000 08:01 157 /lib/ld-2.10.1.so
00274000-00275000 rw-p 0001b000 08:01 157 /lib/ld-2.10.1.so
003b4000-003b7000 r-xp 00000000 08:01 13105 /lib/libSegFault.so
003b7000-003b8000 r--p 00002000 08:01 13105 /lib/libSegFault.so
003b8000-003b9000 rw-p 00003000 08:01 13105 /lib/libSegFault.so
00c76000-00c77000 r-xp 00000000 00:00 0 [vdso]
00e0d000-00e29000 r-xp 00000000 08:01 4817 /lib/libgcc_s.so.1
00e29000-00e2a000 r--p 0001b000 08:01 4817 /lib/libgcc_s.so.1
00e2a000-00e2b000 rw-p 0001c000 08:01 4817 /lib/libgcc_s.so.1
00e73000-00fb1000 r-xp 00000000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb1000-00fb2000 ---p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb2000-00fb4000 r--p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb4000-00fb5000 rw-p 00140000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so
00fb5000-00fb8000 rw-p 00000000 00:00 0
08048000-08049000 r-xp 00000000 08:01 303895 /home/panfeng/segfault/segfault3
08049000-0804a000 r--p 00000000 08:01 303895 /home/panfeng/segfault/segfault3
0804a000-0804b000 rw-p 00001000 08:01 303895 /home/panfeng/segfault/segfault3
09432000-09457000 rw-p 00000000 00:00 0 [heap]
b78cf000-b78d1000 rw-p 00000000 00:00 0
b78df000-b78e1000 rw-p 00000000 00:00 0
bfb67000-bfb7c000 rw-p 00000000 00:00 0 [stack]
5. 一些注意事项
1、出现段错误时,首先应该想到段错误的定义,从它出发考虑引发错误的原因。
2、在使用指针时,定义了指针后记得初始化指针,在使用的时候记得判断是否为NULL。
3、在使用数组时,注意数组是否被初始化,数组下标是否越界,数组元素是否存在等。
4、在访问变量时,注意变量所占地址空间是否已经被程序释放掉。
5、在处理变量时,注意变量的格式控制是否合理等。
6. 参考资料列表
1、http://www.docin.com/p-105923877.html
2、http://blog.chinaunix.net/space.php?uid=317451&do=blog&id=92412
相关推荐
3. **核心转储分析**:在Linux中,当进程因段错误崩溃时,可启用核心转储,通过分析转储文件找出错误原因。 4. **内存检测工具**:Valgrind、AddressSanitizer等工具可以帮助检测内存泄漏、未初始化的内存访问等问题...
第2章 Linux下的C语言编程环境 2.1 Linux编程简介 2.2 Linux下的C语言开发环境 2.3 编辑器的使用 2.4 编译器gcc的使用 2.5 LinuxC程序的开发过程 2.6 make工具及其使用 2.7 使用autoconf 2.8 使用automake ...
段错误的发生可能是由于多种原因,如数组越界、空指针解引用、栈溢出等,这些都增加了诊断的复杂性。 3. 编程中通常碰到段错误的地方有哪些? - 指针错误:未初始化的指针、空指针解引用、过期指针(已释放内存后的...
第2章 Linux下的C语言编程环境 2.1 Linux编程简介 2.2 Linux下的C语言开发环境 2.3 编辑器的使用 2.4 编译器gcc的使用 2.5 LinuxC程序的开发过程 2.6 make工具及其使用 2.7 使用autoconf 2.8 使用automake ...
#### 小结 环境变量在Linux系统中的应用广泛且重要,无论是日常的Shell脚本编写,还是复杂的应用程序开发,理解并熟练掌握环境变量的设置和使用都是必不可少的技能。通过本文的介绍,希望读者能够更加深入地理解...
第2章 Linux下的C语言编程环境 2.1 Linux编程简介 2.2 Linux下的C语言开发环境 2.3 编辑器的使用 2.4 编译器gcc的使用 2.5 LinuxC程序的开发过程 2.6 make工具及其使用 2.7 使用autoconf 2.8 使用automake ...
### Linux的程序调试方法 #### 引言 在Linux环境下编写C或C++程序时,除了需要掌握如何使用编辑器(如vi)来编写代码外,还需要了解如何进行程序调试。程序调试是软件开发过程中非常重要的一个环节,它能够帮助...
### Linux使用小结 #### 一、安装中文输入法 1. **进入命令形式的客户端:** 首先确保已经登录到Linux系统的命令行界面。 2. **切换至root用户:** 输入 `su root` 并按Enter键,根据提示输入root用户的密码。 3. ...
第三章节主要介绍了嵌入式Linux的开发环境及工具软件,包括Vi编辑器的使用、Makefile文件的编写规则、GNU gcc的基本用法、调试工具gdb的使用等内容。 Vi编辑器是Linux系统中的一个编辑器,vi编辑器是一个功能强大、...
#### 五、小结 通过上述步骤,我们可以有效地使用gdb与UML来调试Linux内核。这种方法不仅适用于定位错误和修复bug,还可以帮助我们更深入地理解Linux内核的工作原理和技术细节。随着实践经验的积累,开发者将能够...
### Linux摄像头编程知识点详解 #### 一、视频设备与Video4Linux ...通过以上步骤,我们可以了解到在 Linux 下进行摄像头编程的基本流程和技术要点。这对于从事 Linux 系统开发的工程师来说是非常重要的知识。
1.5 小结 4 第2章 Red Hat系统的安装 5 2.1 准备,认真准备 5 2.2 安装Red Hat Linux 6 2.2.1 创建引导盘和辅助盘 6 2.2.2 不利用引导软盘进行安装 7 2.2.3 虚拟控制台 7 2.2.4 对话框 7 2.3 一步步地安装 7 2.3.1 ...
1.4 小结 14 第2章 shell程序设计 15 2.1 为什么使用shell编程 15 2.2 一点哲学 16 2.3 什么是shell 16 2.4 管道和重定向 18 2.4.1 重定向输出 18 2.4.2 重定向输入 19 .2.4.3 管道 19 2.5 作为程序设计...
#### 小结 本文详细介绍了在Linux环境下忘记密码后如何通过进入单用户模式并使用`passwd`命令来重置密码的过程。这种方法不仅适用于Ubuntu系统,对于其他基于Linux的发行版也基本适用。需要注意的是,在执行上述...
1.10 小结 13 第2章 使用find和xargs 14 2.1 find命令选项 14 2.1.1 使用name选项 15 2.1.2 使用perm选项 16 2.1.3 忽略某个目录 16 2.1.4 使用user和nouser选项 16 2.1.5 使用group和nogroup选项 16 2.1.6 按照更改...
1.4 小结 14 第2章 shell程序设计 15 2.1 为什么使用shell编程 15 2.2 一点哲学 16 2.3 什么是shell 16 2.4 管道和重定向 18 2.4.1 重定向输出 18 2.4.2 重定向输入 19 .2.4.3 管道 19 2.5 作为程序设计...