接下来准备用糗百做一个爬虫的小例子。
但是在这之前,先详细的整理一下Python中的正则表达式的相关内容。
正则表达式在Python爬虫中的作用就像是老师点名时用的花名册一样,是必不可少的神兵利器。
一、 正则表达式基础
1.1.概念介绍
正则表达式是用于处理字符串的强大工具,它并不是Python的一部分。
其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同。
它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的。
下图展示了使用正则表达式进行匹配的流程:
正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。
下图列出了Python支持的正则表达式元字符和语法:
1.2. 数量词的贪婪模式与非贪婪模式
正则表达式通常用于在文本中查找匹配的字符串。
贪婪模式,总是尝试匹配尽可能多的字符;
非贪婪模式则相反,总是尝试匹配尽可能少的字符。
Python里数量词默认是贪婪的。
例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。
而如果使用非贪婪的数量词"ab*?",将找到"a"。
1.3. 反斜杠的问题
与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。
假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":
第一个和第三个用于在编程语言里将第二个和第四个转义成反斜杠,
转换成两个反斜杠\\后再在正则表达式里转义成一个反斜杠用来匹配反斜杠\。
这样显然是非常麻烦的。
Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。
同样,匹配一个数字的"\\d"可以写成r"\d"。
有了原生字符串,妈妈再也不用担心我的反斜杠问题~
二、介绍re模块
2.1. Compile
Python通过re模块提供对正则表达式的支持。
使用re的一般步骤是:
Step1:先将正则表达式的字符串形式编译为Pattern实例。
Step2:然后使用Pattern实例处理文本并获得匹配结果(一个Match实例)。
Step3:最后使用Match实例获得信息,进行其他的操作。
我们新建一个re01.py来试验一下re的应用:
# -*- coding: utf-8 -*-
#一个简单的re实例,匹配字符串中的hello字符串
#导入re模块
import re
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r'hello')
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match1 = pattern.match('hello world!')
match2 = pattern.match('helloo world!')
match3 = pattern.match('helllo world!')
#如果match1匹配成功
if match1:
# 使用Match获得分组信息
print match1.group()
else:
print 'match1匹配失败!'
#如果match2匹配成功
if match2:
# 使用Match获得分组信息
print match2.group()
else:
print 'match2匹配失败!'
#如果match3匹配成功
if match3:
# 使用Match获得分组信息
print match3.group()
else:
print 'match3匹配失败!'
可以看到控制台输出了匹配的三个结果:
下面来具体看看代码中的关键方法。
★ re.compile(strPattern[, flag]):
这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。
第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。
另外,你也可以在regex字符串中指定模式,
比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
可选值有:
- re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
- re.M(全拼:MULTILINE):
多行模式,改变'^'和'$'的行为(参见上图)
-
re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
-
re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
-
re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
-
re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。
以下两个正则表达式是等价的:
# -*- coding: utf-8 -*-
#两个等价的re匹配,匹配一个小数
import re
a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")
match11 = a.match('3.1415')
match12 = a.match('33')
match21 = b.match('3.1415')
match22 = b.match('33')
if match11:
# 使用Match获得分组信息
print match11.group()
else:
print u'match11不是小数'
if match12:
# 使用Match获得分组信息
print match12.group()
else:
print u'match12不是小数'
if match21:
# 使用Match获得分组信息
print match21.group()
else:
print u'match21不是小数'
if match22:
# 使用Match获得分组信息
print match22.group()
else:
print u'match22不是小数'
re提供了众多模块方法用于完成正则表达式的功能。
这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,
但同时也无法复用编译后的Pattern对象。
这些方法将在Pattern类的实例方法部分一起介绍。
如一开始的hello实例可以简写为:
# -*- coding: utf-8 -*-
#一个简单的re实例,匹配字符串中的hello字符串
import re
m = re.match(r'hello', 'hello world!')
print m.group()
re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回
2.2. Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
-
string: 匹配时使用的文本。
- re: 匹配时使用的Pattern对象。
- pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
- lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
- group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
-
groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
- groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
- start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
- end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
- span([group]):
返回(start(group), end(group))。
- expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
下面来用一个py实例输出所有的内容加深理解:
# -*- coding: utf-8 -*-
#一个简单的match实例
import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')
print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\g<2> \g<1>\g<3>'):", m.expand(r'\2 \1\3')
### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!
2.3. Pattern
Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。
Pattern不能直接实例化,必须使用re.compile()进行构造,也就是re.compile()返回的对象。
Pattern提供了几个可读属性用于获取表达式的相关信息:
- pattern: 编译时用的表达式字符串。
- flags: 编译时用的匹配模式。数字形式。
-
groups: 表达式中分组的数量。
- groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
可以用下面这个例子查看pattern的属性:
# -*- coding: utf-8 -*-
#一个简单的pattern实例
import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)
print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex
### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {'sign': 3}
下面重点介绍一下pattern的实例方法及其使用。
1.match
match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;
如果pattern结束时仍可匹配,则返回一个Match对象;
如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
pos和endpos的默认值分别为0和len(string);
re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
注意:这个方法并不是完全匹配。
当pattern结束时若string还有剩余字符,仍然视为成功。
想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
下面来看一个Match的简单案例:
# encoding: UTF-8
import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello')
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!')
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# hello
2.search
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。
从string的pos下标处起尝试匹配pattern,
如果pattern结束时仍可匹配,则返回一个Match对象;
若无法匹配,则将pos加1后重新尝试匹配;
直到pos=endpos时仍无法匹配则返回None。
pos和endpos的默认值分别为0和len(string));
re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
那么它和match有什么区别呢?
match()函数只检测re是不是在string的开始位置匹配,
search()会扫描整个string查找匹配,
match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none
例如:
print(re.match(‘super’, ‘superstition’).span())
会返回(0, 5)
print(re.match(‘super’, ‘insuperable’))
则返回None
search()会扫描整个字符串并返回第一个成功的匹配
例如:
print(re.search(‘super’, ‘superstition’).span())
返回(0, 5)
print(re.search(‘super’, ‘insuperable’).span())
返回(2, 7)
看一个search的实例:
# -*- coding: utf-8 -*-
#一个简单的search实例
import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'world')
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = pattern.search('hello world!')
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# world
3.split
split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。
maxsplit用于指定最大分割次数,不指定将全部分割。
import re
p = re.compile(r'\d+')
print p.split('one1two2three3four4')
### output ###
# ['one', 'two', 'three', 'four', '']
4.findall
findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。
import re
p = re.compile(r'\d+')
print p.findall('one1two2three3four4')
### output ###
# ['1', '2', '3', '4']
5.finditer
finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[,
flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
import re
p = re.compile(r'\d+')
for m in p.finditer('one1two2three3four4'):
print m.group(),
### output ###
# 1 2 3 4
6.sub
sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
import re
p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print p.sub(r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print p.sub(func, s)
### output ###
# say i, world hello!
# I Say, Hello World!
7.subn
subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。
import re
p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print p.subn(r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print p.subn(func, s)
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2)
至此,Python的正则表达式基本介绍就算是完成了^_^
分享到:
相关推荐
6. Python正则表达式的示例 - 编译正则表达式:`pattern = ***pile(r'hello')` - 匹配字符串:`match1 = pattern.match('helloworld!')` - 提取匹配信息:`match1.group()` - 使用标志位编译:`pattern = ***...
4. **代码生成**:对于多种编程语言,如Java、Python、JavaScript等,工具可以生成对应的代码片段,方便将正则表达式集成到项目中。 5. **学习资源**:为了帮助用户深入理解正则式,工具可能还包含教程、参考资料和...
学习笔记:Python爬虫正则表达式.doc
7. **正则表达式引擎**:讨论不同的正则表达式引擎(如Perl兼容、ECMAScript等)的差异,以及它们在不同编程语言(如JavaScript、Python、Java等)中的实现。 8. **实例解析**:提供大量实际例子,帮助学习者通过...
- **网页抓取**:在网页源码中使用正则表达式查找特定信息,辅助网络爬虫工作。 - **文本替换**:使用`re.sub()`可以批量替换字符串中的特定模式,实现格式化和转换。 6. **进阶话题** - **正则表达式性能优化**...
3. 正则表达式:在Python中,`re`模块用于处理字符串匹配和查找,常用于从网页文本中提取特定模式的数据。 4. 数据存储:学会将抓取的数据存储到文件(如CSV、JSON)、数据库(如SQLite、MySQL)或其他格式,如...
下面将详细介绍如何在Python爬虫项目中利用正则表达式来进行数据清洗与处理。 #### 正则表达式基础 正则表达式(Regular Expression)是一种用于描述字符组合模式的语言。通过定义特定的规则,我们可以利用它来...
总的来说,掌握Python中的字符串处理和正则表达式是任何Python开发者必备的技能,无论是在数据处理、文本分析还是网络爬虫等领域都有广泛应用。通过清华大学的精品课程,学习者可以系统地学习并掌握这些重要的编程...
本文将分享如何使用Python正则表达式来匹配不包含特定字符集的字符串。 首先,我们来看一个基本的正则表达式匹配例子。假设我们要从一个字符串中找出所有以“https?”开头,后面跟着“://”,然后再以“.jpg”、“....
9. **文件爬虫与网络爬虫中的应用**:在文件爬虫中,正则表达式常用于从文本文件中提取所需信息,如URL、邮箱地址等。在网络爬虫中,它可以用于解析HTML或XML文档,提取链接、文本内容等。 10. **编程语言支持**:...
深入理解Python正则表达式对于任何希望在数据处理、文本分析或网络爬虫等领域工作的开发者来说都至关重要。本文将详细探讨Python正则表达式的相关知识,并结合实例进行讲解。 1. 正则表达式基础: - **元字符**:...
看标题,结果生成excel表格 注: 使用时,header需要更改为自己浏览器中的,附加查找方法 有些运行不了可能是有些库没有安装,在命令行里,打开python的scripts文件夹下使用pip install 库的名字,即可安装
正则表达式在网页爬虫、数据分析、文本处理、编程语言(如JavaScript、Python、Java等)以及各种文本编辑器中都有广泛的应用。《水淼·正则表达式助手》通过其丰富的功能,为用户提供了强大的支持,无论是初学者还是...
正则表达式爬取百度搜索结果1. 爬虫架构2. 创建分页url2.1 网页url规律查找2.2 创建接口输出url测试3 正则表达式匹配3.1 直接匹配源代码3.2 配合网页解析进行结果匹配4. 小结5. 全部代码5.1 re + 源代码5.2 bs4 + re...
这个页面的案例,其实代码已经在页面上有了,这个只是方便哪些复制都不想复制的人。不过,这个东西拿到后就可以运行了,运行前记得导入相应模块 python -m pip install requests 这个是Python3
总的来说,正则表达式是IT领域中的一项强大技能,它的妙用无处不在,无论是数据清洗、日志分析还是网络爬虫,都能发挥重要作用。通过不断学习和实践,我们可以不断提升对正则表达式的理解和应用,从而解决更多复杂的...
通过本视频教程的学习,你可以掌握Python正则表达式的基本用法,并能够将其应用于实际的爬虫项目中,有效提升数据提取的效率和准确性。无论你是初学者还是有一定经验的开发者,都能从中受益匪浅。记得在学习过程中多...
4. **代码生成**:对于编写代码时需要使用的正则表达式,The Regulator可以生成多种编程语言的代码片段,如Java、Python、JavaScript等,大大提高了开发效率。 5. **多种引擎支持**:它不仅支持标准的正则表达式,...
10.1_初识正则表达式|正则表达式与JSON|Python3.8入门_&_进阶_&_原生爬虫实战完全解读