`
luoweifu
  • 浏览: 62574 次
  • 性别: Icon_minigender_1
  • 来自: 北京
文章分类
社区版块
存档分类
最新评论

图(1)——图的定义和基本概念

 
阅读更多

概述

(Graph)是一种比线性表和树更为复杂的数据结构。

线性结构:是研究数据元素之间的一对一关系。在这种结构中,除第一个和最后一个元素外,任何一个元素都有唯一的一个直接前驱和直接后继。

树结构:是研究数据元素之间的一对多的关系。在这种结构中,每个元素对下()可以有0个或多个元素相联系,对上()只有唯一的一个元素相关,数据元素之间有明显的层次关系。

图结构:是研究数据元素之间的多对多的关系。在这种结构中,任意两个元素之间可能存在关系。即结点之间的关系可以是任意的,图中任意元素之间都可能相关。

图的基本概念

图的定义和术语

一个(G)定义为一个偶对(V,E),记为G=(V,E)。其中:V是顶点(Vertex)的非空有限集合,记为V(G)E是无序集V&V的一个子集,记为E(G),其元素是图的弧(Arc)

将顶点集合为空的图称为空图。其形式化定义为:

G=(VE)

V={v|vÎdataobject}

E={<v,w>|v,wÎVp(v,w)}

P(v,w)表示从顶点v到顶点w有一条直接通路。

(Arc):表示两个顶点vw之间存在一个关系,用顶点偶对<v,w>表示。通常根据图的顶点偶对将图分为有向图和无向图。

有向图(Digraph)若图G的关系集合E(G)中,顶点偶对<v,w>vw之间是有序的,称图G是有向图。

在有向图中,若<v,w>ÎE(G),表示从顶点v到顶点w有一条弧。其中:v称为弧尾(tail)或始点(initialnode)w称为弧头(head)或终点(terminalnode)

无向图(Undigraph)若图G的关系集合E(G)中,顶点偶对<v,w>vw之间是无序的,称图G是无向图。

在无向图中,若"<v,w>ÎE(G),有<w,v>ÎE(G),即E(G)是对称,则用无序对(v,w)表示vw之间的一条边(Edge),因此(v,w)(w,v)代表的是同一条边。

1:设有有向图G1和无向图G2,形式化定义分别是:

G1=(V1E1)

V1={a,b,c,d,e}

E1={<a,b>,<a,c>,<a,e>,<c,d>,<c,e>,<d,a>,<d,b>,<e,d>}

G2=(V2E2)

V2={a,b,c,d}

E2={(a,b),(a,c),(a,d),(b,d),(b,c),(c,d)}

它们所对应的图如图所示。

完全无向图:对于无向图,若图中顶点数为n,用e表示边的数目,则eÎ[0n(n-1)/2]。具有n(n-1)/2条边的无向图称为完全无向图。完全无向图另外的定义是:

对于无向图G=(VE),若"vivjÎV,当vivj时,有(vi,vj)ÎE,即图中任意两个不同的顶点间都有一条无向边,这样的无向图称为完全无向图。

完全有向图:对于有向图,若图中顶点数为n,用e表示弧的数目,则eÎ[0n(n-1)]。具有n(n-1)条边的有向图称为完全有向图.完全有向图另外的定义是:

对于有向图G=(VE),若"vivjÎV,当vivj时,有<vi,vj>ÎE<vj,vi>ÎE,即图中任意两个不同的顶点间都有一条弧,这样的有向图称为完全有向图。

有很少边或弧的图(e<nn)的图称为稀疏图,反之称为稠密图

(Weight)与图的边和弧相关的数。权可以表示从一个顶点到另一个顶点的距离或耗费。

子图和生成子图:设有图G=(VE)G=(V’,E),若V’ÌVE’ÌE,则称图G’是G的子图;若V=VE’ÌE,则称图G’是G的一个生成子图。

顶点的邻接(Adjacent)对于无向图G=(VE),若边(v,w)ÎE,则称顶点vw互为邻接点,即vw相邻接。边(v,w)依附(incident)与顶点vw

对于有向图G=(VE),若有向弧<v,w>ÎE,则称顶点v“邻接到”顶点w,顶点w“邻接自”顶点v,弧<v,w>与顶点vw“相关联”。

顶点的度、入度、出度:对于无向图G=(VE),"viÎV,图G中依附于vi的边的数目称为顶点vi(degree),记为TD(vi)

显然,在无向图中,所有顶点度的和是图中边的2倍。即∑TD(vi)=2ei=1,2,,ne为图的边数。

对有向图G=(VE),若"viÎV,图G中以vi作为起点的有向边()的数目称为顶点vi出度(Outdegree),记为OD(vi);以vi作为终点的有向边()的数目称为顶点vi入度(Indegree),记为ID(vi)。顶点vi的出度与入度之和称为vi的度,记为TD(vi)。即

TD(vi)=OD(vi)+ID(vi)

路径(Path)、路径长度、回路(Cycle)对无向图G=(VE),若从顶点vi经过若干条边能到达vj,称顶点vivj是连通的,又称顶点vivj路径

对有向图G=(VE),从顶点vivj有有向路径,指的是从顶点vi经过若干条有向边()能到达vj。或路径是图G中连接两顶点之间所经过的顶点序列。即

Path=vi0vi1vimvijÎV(vij-1,vij)ÎEj=1,2,,m

Path=vi0vi1vimvijÎV<vij-1,vij>ÎEj=1,2,,m

路径上边或有向边()的数目称为该路径的长度

在一条路径中,若没有重复相同的顶点,该路径称为简单路径;第一个顶点和最后一个顶点相同的路径称为回路();在一个回路中,若除第一个与最后一个顶点外,其余顶点不重复出现的回路称为简单回路(简单环)

连通图、图的连通分量:对无向图G=(VE),若"vivjÎVvivj都是连通的,则称图G连通图,否则称为非连通图。若G是非连通图,则极大的连通子图称为G连通分量

对有向图G=(VE),若"vivjÎV,都有以vi为起点,vj为终点以及以vj为起点,vi为终点的有向路径,称图G是强连通图,否则称为非强连通图。若G是非强连通图,则极大的强连通子图称为G强连通分量

“极大”的含义:指的是对子图再增加图G中的其它顶点,子图就不再连通

生成树、生成森林:一个连通图(无向图)的生成树是一个极小连通子图,它含有图中全部n个顶点和只有足以构成一棵树的n-1条边,称为图的生成树,如图所示。

关于无向图的生成树的几个结论:

◆一棵有n个顶点的生成树有且仅有n-1条边;

◆如果一个图有n个顶点和小于n-1条边,则是非连通图;

◆如果多于n-1条边,则一定有环;

◆有n-1条边的图不一定是生成树。

有向图的生成森林是这样一个子图,由若干棵有向树组成,含有图中全部顶点。

有向树是只有一个顶点的入度为0,其余顶点的入度均为1的有向图,如图7-3所示。

网:每个边(或弧)都附加一个权值的图,称为带权图。带权的连通图(包括弱连通的有向图)称为网或网络。网络是工程上常用的一个概念,用来表示一个工程或某种流程,如图7-4所示。

图的抽象数据类型定义

图是一种数据结构,加上一组基本操作就构成了图的抽象数据类型。图的抽象数据类型定义如下:

Graph{

数据对象V:具有相同特性的数据元素的集合,称为顶点集。

数据关系RR={VR}

VR={<v,w>|<v,w>|v,wÎVp(v,w)<v,w>表示从vw的弧,P(v,w)定义了弧<v,w>的信息}

基本操作P

添加顶点

添加边

获得顶点的个数

获得边的条数

移除顶点

移除边

……

}


图的接口Graph

package datastructure.graph;
/**
 * 图的接口
 * @author luoweifu
 *
 */
public interface Graph {
	/**
	 * 添加顶点
	 * @param v
	 */
	public void addVex(Object v);
	/**
	 * 添加边
	 * @param v1 第一个顶点
	 * @param v2 第二个顶点
	 * @param weight 权值
	 */
	public void addEdge(Object v1, Object v2, double weight);
	/**
	 * 添加边
	* @param v1 第一个顶点
	 * @param v2 第二个顶点
	 * @param info 边信息
	 * @param weight 权值
	 */
	public void addEdge(Object v1, Object v2, Object info, double weight);
	/**
	 * 置空图
	 */
	public void clear();
	/**
	 * 获得顶点v的第一个邻接结点
	 * @param v 顶点
	 * @return 顶点v的第一个邻接结点
	 */
	public Object getFirstVertex(Object v);
	/**
	 * 在图G中寻找v1结点的邻接结点v2的下一个邻接结点
	 * @param v1 顶点
	 * @param v2 v1的一个邻接结点
	 * @return 邻接v1的在v2后的一个结点
	 */
	public Object getNextVertex(Object v1, Object v2);
	/**
	 * 获得顶点的个数
	 * @return
	 */
	public int getVertexSize();
	/**
	 *获得边的条数
	 * @return
	 */
	public int getEdgeSize();
	/**
	 * 移除顶点
	 * @param v 顶点
	 */
	public void removeVex(Object v);
	/**
	 * 移除边
	 * @param v1 顶点1
	 * @param v2 顶点2
	 */
	public void removeEdge(Object v1, Object v2);
	/**
	 * 深度优先遍历
	 * @param o 遍历的初始顶点
	 * @return 遍历的结果
	 */
	public String dfs(Object o);
	/**
	 * 深度优先遍历
	 * @param o 遍历的初始顶点
	 * @return 遍历的结果
	 */
	public String bfs(Object o);
	/**
	 * 打印图的各顶点
	 * @return
	 */
	public String printGraph();
}

边的接口Edge

package datastructure.graph;


public abstract class Edge implements Comparable{
	protected double weight;
	protected Object info;
	/**
	 * 构造函数
	 */
	public Edge() {
		this.weight = 0;
	}
	/**
	 * 构造函数
	 * @param weight 权值
	 */
	public Edge(double weight) {
		this.weight = weight;
	}
	public Edge(Object info, double weight) {
		this.weight = weight;
		this.info = info;
	}
	
	/**
	 * 获取权值
	 * @return 权值
	 */
	public double getWeight() {
		return weight;
	}
	/**
	 * 设置权值
	 * @param weight 权值
	 */
	public void setWeight(double weight) {
		this.weight = weight;
	}
	/**
	 * 获取边的信息
	 * @return 边的信息
	 */
	public Object getInfo() {
		return info;
	}
	/**
	 * 设置边的信息
	 * @param info 边的信息
	 */
	public void setInfo(Object info) {
		this.info = info;
	}
	/**
	 * 获取边的第一个顶点
	 * @return 第一个顶点
	 */
	public abstract Object getFirstVertex();
	/**
	 * 获取边的第二个顶点
	 * @return 第二个顶点
	 */
	public abstract Object getSecondVertex();
}


分享到:
评论

相关推荐

    重新整理汇编—————寄存器的基本概念[二].doc

    重新整理汇编—————寄存器的基本概念[二] 本文档对寄存器的基本概念进行了详细的介绍,涵盖了寄存器的定义、分类、结构、工作原理等方面的知识点。 1. 寄存器的定义:寄存器是一种小型的高速存储器,位于 ...

    基于深度学习理论的化学概念教学——以“溶解度”相关概念为例.pdf

    例如在饱和溶液和不饱和溶液的概念学习中,学生需要掌握饱和溶液和不饱和溶液的定义、特点、应用等核心要素,并将其应用于实际问题中,例如解决生活中的实际问题。 4. 迁移与应用——化学概念的灵活迁移 迁移与...

    图——基本概念和类型定义

    图的基本概念: 引入 定义 相关术语: 有向图 无向图 完全图 稀疏图 稠密图 权 网 邻接 关联(依附) 顶点的度 有向树 路径 路径长度 回路(环) 简单路径 简单回路(简单环) 连通图 强连通图 子图 连通分量 强连通...

    android理论学习——基本概念

    本篇文章将深入探讨"android理论学习——基本概念"中的三个关键要素:Manifest、Content Providers以及Intent和Intent-filter。这些元素构成了Android应用程序的基础架构,使得开发者能够构建功能丰富的移动应用。 ...

    MBA决策分析教材——多目标决策的基本概念.doc

    《MBA决策分析教材——多目标决策的基本概念》 多目标决策是企业管理中至关重要的一环,尤其在复杂的决策环境中,往往需要同时考虑多个相互冲突或不可公度的目标。本章主要介绍了多目标决策的基本概念,包括其特点...

    信息新概念——信息与信息技术.docx

    《信息新概念——信息与信息技术》这篇文档主要探讨了信息的基本概念、信息技术的含义以及它们在现代社会中的重要性。教学目标旨在让学生理解信息的内涵、特征,了解信息技术及其与计算机的关系,同时关注信息技术的...

    N2 Ch1——1.2 概率的定义及性质.pdf

    综上所述,文档《N2 Ch1——1.2 概率的定义及性质.pdf》系统地介绍了概率论的基础知识,包括概率的频率定义、统计概率定义以及公理化定义,为后续学习概率论的乘法公式、全概率公式和事件的独立性等内容奠定了基础。...

    统一建模语言(UML)参考手册——基本概念.pdf

    《统一建模语言(UML)参考手册——基本概念》是一份详尽的指南,旨在介绍UML(Unified Modeling Language)的基础知识,适用于软件工程师、架构师、分析师以及其他对软件开发和系统设计感兴趣的专业人士。UML是一种...

    数据结构——图的建立和输出

    首先,我们需要了解图的基本概念。图分为有向图和无向图。在有向图中,每条边都有明确的方向,从一个顶点指向另一个顶点。例如,可以用来表示从一个城市到另一个城市的航班路径。而在无向图中,边没有方向,两个顶点...

    小学信息技术第三册下 第7课 大小图形轻松画——如何定义带参数的过程2教案 泰山版.doc

    总的来说,本节课通过实践操作,使学生掌握LOGO语言中带参数过程的基本概念和应用,激发他们对编程的兴趣,培养解决问题的能力,为后续更复杂的编程学习打下基础。通过这样的教学方式,学生不仅能学会画图,还能体会...

    c++类和对象基本概念(csdn)————程序.pdf

    本文将介绍 C++ 中的类和对象基本概念,包括类的定义、类的特点、对象的概念、类的实现、权限限定词的作用、创建对象的方法等。 类的概念: 在 C++ 中,类是一系列事物的抽象,万事万物都可以是类。类包括两个部分...

    PC技术内幕系列专题(七)——CPU技术内幕之基本计算概念篇.pdf

    《PC技术内幕系列专题(七)——CPU技术内幕之基本计算概念篇》深入解析了CPU这一复杂的计算核心,强调了理解和分析CPU时不应局限于物理层面和最新技术,而是要重视基本的计算概念。文章旨在为非计算机硬件专业的...

    高一数学基本概念——第6章三角函数.rar

    在高中数学的学习中,第六章三角函数是至关重要的一个部分,...这个压缩包内的"高一数学基本概念——第6章三角函数.pdf"文件,应该包含详细的理论解释、例题解析和练习题,帮助学生全面理解和掌握这一重要章节的内容。

    数据库原理及应用A实验报告(实验一——数据定义与数据操纵)

    此外,实验涉及到关系数据库的基本概念,如实体完整性(主键不允许为空值)、参照完整性(外键关联主键确保数据一致性)和用户定义完整性(自定义的约束条件)。 在创建各关系表时,例如图书分类、书目、图书、读者...

    java——Graphics[定义].pdf

    本文将对 Java 图形编程中的基本概念和技术进行总结,主要涵盖 Graphics、paint()、repaint() 等关键概念。 Graphics 概念 Graphics 是 Java 中的一个抽象类,提供了基本的绘图方法,如画直线、曲线等。 Graphics ...

    数据结构C++ 线性表——顺序表和单链表基本操作(含代码和注释).docx

    ### 数据结构C++ 线性表——顺序表和单链表基本操作 #### 一、概述 在《数据结构C++ 线性表——顺序表和单链表基本操作(含代码和注释).docx》文档中,作者详细介绍了如何在C++中实现顺序表和单链表的基本操作,并...

    统一建模语言(UML)参考手册——基本概念

    通过对UML基本概念的学习,不仅可以提高软件开发的效率和质量,还能促进团队成员之间的有效沟通,确保项目顺利进行。无论是初学者还是经验丰富的开发者,深入理解UML的基本概念都是提升软件工程技能的关键步骤。

    飞思卡尔单片机教程——概念介绍非常详细

    飞思卡尔单片机教程——概念介绍非常详细 本教程主要介绍了飞思卡尔单片机的概念和基本结构,着重于ATD模块的控制寄存器和A/D转换的实现机制。 一、ATD模块控制寄存器 1. ATD0CTL2:A/D控制寄存器2 ASCIE:转换...

    20172.1位置——上下前后.[定义].pdf

    标题和描述中提到的《20172.1位置——上下前后.[定义].pdf》是一份关于小学数学教学的内容,主要围绕着“上下前后”的位置关系进行教学。这一单元的目标是让学生通过具体活动,理解和体验上下、前后的位置与顺序,...

Global site tag (gtag.js) - Google Analytics