转载:http://database.51cto.com/art/201107/274661_1.htm
配置优化
zookeeper.session.timeout
默认值:3分钟(180000ms)
说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.
调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。
不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了 (让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS 带来更多负担。特别是那些固定分配regions的场景。
hbase.regionserver.handler.count
默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging ,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。
这里是一个案例 Hadoop and HBase Optimization for Read Intensive Search Applications ,作者在SSD的机器上设置IO线程数为100,仅供参考。
hbase.hregion.max.filesize
默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。
特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。
一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。
当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间平稳的读写性能。
既然split和compaction如此影响性能,有没有办法去掉?
compaction是无法避免的,split倒是可以从自动调整为手动。
只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。
再配合RegionSplitter这个工具,在需要split时,手动split。
手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。
hbase.regionserver.global.memstore.upperLimit/lowerLimit
默认值:0.4/0.35
upperlimit说明:hbase.hregion.memstore.flush.size 这个参数的作用是 当单个memstore达到指定值时,flush该memstore。但是,一台ReigonServer可能有成百上千个memstore,每个 memstore也许未达到flush.size,jvm的heap就不够用了。该参数就是为了限制memstores占用的总内存。
当ReigonServer内所有的memstore所占用的内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些memstore以释放所有memstore占用的内存。
lowerLimit说明: 同upperLimit,只不过当全局memstore的内存达到35%时,它不会flush所有的memstore,它会找一些内存占用较大的 memstore,做个别flush,当然更新还是会被block。lowerLimit算是一个在全局flush导致性能暴跌前的补救措施。为什么说是性能暴跌?可以想象一下,如果memstore需要在一段较长的时间内做全量flush,且这段时间内无法接受任何读写请求,对HBase集群的性能影响是很大的。
调优:
这是一个Heap内存保护参数,默认值已经能适用大多数场景。它的调整一般是为了配合某些专属优化,比如读密集型应用,将读缓存开大,降低该值,腾出更多内存给其他模块使用。
这个参数会给使用者带来什么影响?
比如,10G内存,100个region,每个memstore 64M,假设每个region只有一个memstore,那么当100个memstore平均占用到50%左右时,就会达到lowerLimit的限制。假设此时,其他memstore同样有很多的写请求进来。在那些大的region未flush完,就可能又超过了upperlimit,则所有 region都会被block,开始触发全局flush。
不过,除了你的内存非常小或你的应用场景里大多数都是读,我觉得不需要去调这个参数。
hfile.block.cache.size
默认值:0.2
说明:storefile的读缓存占用Heap的大小百分比,0.2表示20%。该值直接影响数据读的性能。
调优:
当然是越大越好,如果读比写少,开到0.4-0.5也没问题。如果读写较均衡,0.3左右。如果写比读多,果断默认吧。设置这个值的时候,你同时要参考 hbase.regionserver.global.memstore.upperLimit ,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。
hbase.hstore.blockingStoreFiles
默认值:7
说明:在compaction时,如果一个Store(Coulmn Family)内有超过7个storefile需要合并,则block所有的写请求,进行flush,限制storefile数量增长过快。
调优:
block写请求会影响当前region的性能,将值设为单个region可以支撑的最大store file数量会是个不错的选择,即允许comapction时,memstore继续生成storefile。最大storefile数量可通过 region size/memstore size来计算。如果你将region size设为无限大,那么你需要预估一个region可能产生的最大storefile数。
hbase.hregion.memstore.block.multiplier
默认值:2
说明:当一个region里的memstore超过单个memstore.size两倍的大小时,block该region的所有请求,进行 flush,释放内存。虽然我们设置了memstore的总大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个100M的数据,此时 memstore的大小会瞬间暴涨到超过预期的memstore.size。这个参数的作用是当memstore的大小增至超过 memstore.size时,block所有请求,遏制风险进一步扩大。
调优:
这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和 hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。
其他
启用LZO压缩
LZO对比Hbase默认的GZip,前者性能较高,后者压缩比较高,具体参见 Using LZO Compression 。对于想提高HBase读写性能的开发者,采用LZO是比较好的选择。对于非常在乎存储空间的开发者,则建议保持默认。
不要在一张表里定义太多的Column Family
Hbase目前不能良好的处理超过包含2-3个CF的表。因为某个CF在flush发生时,它邻近的CF也会因关联效应被触发flush,最终导致系统产生更多IO。
批量导入
在批量导入数据到Hbase前,你可以通过预先创建regions,来平衡数据的负载。详见 Table Creation: Pre-Creating Regions
避免CMS concurrent mode failure
HBase使用CMS GC。默认触发GC的时机是当年老代内存达到90%的时候,这个百分比由 -XX:CMSInitiatingOccupancyFraction=N 这个参数来设置。concurrent mode failed发生在这样一个场景:
当年老代内存达到90%的时候,CMS开始进行并发垃圾收集,于此同时,新生代还在迅速不断地晋升对象到年老代。当年老代CMS还未完成并发标记时,年老代满了,悲剧就发生了。CMS因为没内存可用不得不暂停mark,并触发一次全jvm的stop the world(挂起所有线程),然后采用单线程拷贝方式清理所有垃圾对象。这个过程会非常漫长。为了避免出现concurrent mode failed,我们应该让GC在未到90%时,就触发。
通过设置 -XX:CMSInitiatingOccupancyFraction=N
这个百分比, 可以简单的这么计算。如果你的 hfile.block.cache.size 和 hbase.regionserver.global.memstore.upperLimit 加起来有60%(默认),那么你可以设置 70-80,一般高10%左右差不多。
Hbase客户端优化
AutoFlush
将HTable的setAutoFlush设为false,可以支持客户端批量更新。即当Put填满客户端flush缓存时,才发送到服务端。
默认是true。
Scan Caching
scanner一次缓存多少数据来scan(从服务端一次抓多少数据回来scan)。
默认值是 1,一次只取一条。
Scan Attribute Selection
scan时建议指定需要的Column Family,减少通信量,否则scan操作默认会返回整个row的所有数据(所有Coulmn Family)。
Close ResultScanners
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
Optimal Loading of Row Keys
当你scan一张表的时候,返回结果只需要row key(不需要CF, qualifier,values,timestaps)时,你可以在scan实例中添加一个filterList,并设置 MUST_PASS_ALL操作,filterList中add FirstKeyOnlyFilter或KeyOnlyFilter。这样可以减少网络通信量。
Turn off WAL on Puts
当Put某些非重要数据时,你可以设置writeToWAL(false),来进一步提高写性能。writeToWAL(false)会在Put时放弃写WAL log。风险是,当RegionServer宕机时,可能你刚才Put的那些数据会丢失,且无法恢复。
启用Bloom Filter
Bloom Filter通过空间换时间,提高读操作性能。
原文链接:http://baiyunl.iteye.com/blog/1119129
相关推荐
HBase,全称为Hierarchical ...通过这些资源,你可以深入理解HBase的工作原理,掌握配置优化技巧,并利用HBase的强大功能处理大规模数据。在实际应用中,还需要结合具体业务需求和硬件环境,进行细致的调优和设计。
同时,掌握HBase的安装、配置和基本操作,如创建表、插入数据、查询数据等,是学习HBase的基础。 【HBase与其他技术的集成】 HBase可以与Apache Spark集成,用于实时数据处理和分析。Phoenix是SQL查询引擎,允许...
│ Hbase性能优化-配置snappy压缩 │ Hbase中索引的介绍 │ PHoenix的编译及安装部署 │ PHoenix与Hbase表的关联使用 ├─03_笔记 │ [案例:Hbase的设计及企业优化].txt ├─04_代码 │ └─微博案例 ├─08_作业 ...
7. 性能调优:分享关于HBase性能优化的经验,包括配置调整、数据模型设计等。 8. 示例代码:通过"src"目录下的代码,提供实际操作的参考,帮助读者更好地理解和应用HBase。 这篇学习笔记对于想要深入了解HBase的...
10. **集群下开发HBase**:当对单机环境熟悉后,可以进一步学习如何在多节点集群上配置和使用HBase,包括数据分布、容错和性能优化。 这篇笔记详细指导了初学者如何从零开始构建Hadoop和HBase环境,对于想要学习...
**HBase:分布式大数据存储系统** HBase,全称为Apache HBase,是构建在Hadoop文件系统(HDFS)之上的...这份"Hbase相关的笔记"很可能包含了关于HBase的基础概念、架构、操作和优化等内容,是深入学习HBase的好资源。
【标题】:“安装笔记:hadoop+hbase+sqoop2+phoenix+kerberos” 【描述】:在本文中,我们将探讨如何在两台云主机(实际环境可能需要三台或更多)上安装...每个组件的选择和配置都需要根据实际需求和性能优化来考虑。
5. **性能优化**:讨论如何通过调整HBase和Hive的配置来优化查询性能,比如设置合适的HBase Region大小,调整Hive的执行引擎等。 6. **注意事项和问题解决**:可能出现的错误和解决方案,如权限问题、版本兼容性...
三、HBase源码解析 3.1 数据模型 HBase的数据模型在源码中主要体现在`org.apache.hadoop.hbase.regionserver`包下的`Region`类,它是实际存储数据的单元,包含对行、列的管理。 3.2 操作API 客户端与HBase交互的...
【标题】:“笔记配置文档_linux_” 涵盖了在Linux操作系统环境下进行软件安装与配置的相关知识。这些笔记详细记录了多个关键组件的安装步骤和配置方法,旨在帮助用户在Linux环境中顺利搭建和管理软件服务。 【描述...
在学习过程中,第三天笔记可能详细讲解了如何安装配置这些组件,以及如何使用它们进行实际的数据处理和分析。可能涵盖的主题包括Hadoop集群的搭建、HDFS的使用命令、HBase的表创建和数据插入、Hive的SQL语法及查询...
通过阅读“HBase java api学习笔记.docx”,你将进一步了解这些概念和API的使用细节,结合“HBaseClientDemo”进行实践,将有助于加深对HBase客户端操作的理解。在大数据处理和分析项目中,熟练掌握HBase Java API...
6. **第六天-HBase.ppt** - 这个PPT很可能是课程的主要内容,涵盖了HBase的所有核心知识点,包括安装配置、数据模型、API使用、性能优化以及常见问题解决方案。 总的来说,通过这些资源,学生可以全面了解HBase的...
三、kylin.properties 配置 kylin.properties 文件是 Kylin 的核心配置文件,用于配置 Kylin 的各种参数。例如,需要配置 kylin.rest.servers 参数,例如 kylin.rest.servers=10.1.43.88:7070。 四、启动 Kylin ...
通过阅读这些笔记,读者可以了解到大数据生态中的三个关键组件:Hadoop用于存储和处理数据,Hive提供数据分析的便利性,而HBase则提供高性能的实时数据访问。这三者共同构成了大数据处理的基础架构,对于理解大数据...
【标题】"Hadoopusic-main开发笔记"涉及的是在大数据处理框架Hadoop上构建...开发笔记可能详细记录了每个阶段的问题、解决方案、性能优化以及最佳实践,对于学习和理解如何在实际项目中应用Hadoop有着很高的参考价值。
学习这些内容时,你可能需要理解它们的基本概念、工作原理、配置与管理、优化技巧以及实际应用案例。此外,Hadoop生态系统还包括Pig、Spark、Flume、Oozie等工具,它们分别在数据处理、流计算、数据采集和工作流程...
5. Hadoop优化:涉及数据本地化、任务调度策略、磁盘I/O优化、网络带宽优化、内存和CPU使用率优化等多个方面。 6. Hadoop实战:包括数据导入导出、数据处理(如使用Pig或Hive进行查询)、实时流处理(如使用Storm或...
压缩包内的“学习笔记”可能包括以下内容:Hadoop安装与配置教程,HDFS的基本操作和管理,MapReduce编程模型的实例解析,Hadoop集群的优化策略,以及YARN、HBase、Hive和Pig的使用方法等。这些笔记可以帮助读者深入...
学习如何在Linux上配置这些工具,包括环境变量设置、集群部署、配置优化等,是大数据学习的基础。 八、Shell脚本编程 编写Shell脚本可以自动化重复任务,提高工作效率。学习bash语言,掌握变量、条件语句、循环、...