`
QING____
  • 浏览: 2250490 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

JAVA与排序算法

    博客分类:
  • JAVA
 
阅读更多

一.冒泡排序

特点:实现简单,无额外空间消耗,速度较慢,适合数据较少的场景,复杂度为O(N^2)

思路:每一轮比较都从头开始,然后两两比较,如果左值比右值大,则交换位置,每一轮结束后,当前轮"最后一个元素"必将是最大的.

 

场景:算法稳定,数据量较小的场景。时间复杂度O(n^2)

 

原始数组:[4,3,10,6,2]
过程:每一次遍历,都会将“无序区”中最大的元素交换到数组的末尾
------------>
-->3,4,10,6,2
-->3,4,10,6,2
-->3,4,6,10,2
-->3,4,6,2,[10]
------------>
-->3,4,6,2,[10]
-->3,4,6,2,[10]
-->3,4,2,[6,10]
------------>
-->3,4,2,[6,10]
-->3,2,[4,6,10]
------------>
-->2,[3,4,6,10]
---->
结束:[2,3,4,6,10]

 

public class BubbleSort {

	static void sort(int[] sources){
		int tmp;
		int size = sources.length;
		for(int i =0; i < size - 1; i++){
			//精髓:每次遍历,都将"最大"元素顶到最后
			//0, 1,8,13,3,4,7,||20
			//0, 1,8,3,4,7,|| 13,20
			//0, 1,3,4,7,||8,13,20
			//0 ,1,3,4|| 7,8,13,20
			for(int j=0; j< size -i -1;j++){
				if(sources[j] > sources[j+1]){
					tmp = sources[j];
					sources[j] = sources[j+1];
					sources[j+1] = tmp;
				}
			}
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {1,0,20,8,13,3,4,7};
		sort(sources);
		System.out.println(Arrays.toString(sources));

	}

}

 

二.快速排序

特点:速度快,无额外空间开支,不过算法本身基于递归,可能对内存有额外的消耗.不适合数据集合较大的场景.

思路:就像对班级中的同学根据身高分组一样,首先找个学生做"标杆",比他高的站后面,比他矮的站前面;然后从此"标杆"之前/之后的队列中,分别再在找一个"标杆",并按照相同的规则排队,直到结束!!"标杆"的选取,可以是随机的.下面的例子中,将指定数组"区间"(low~high)的一个元素(即low)作为"标杆".

 

场景:算法不稳定,时间复杂度O(n*logn),空间复杂度O(n*logn)

原始数组:[4,3,10,6,2]
过程:每次递归内的排序,总是先选择“标杆”,我们取递归区间的第一个元素为标杆
------------>
--->标杆为4,右边开始交换,将比4小的交换
--->2,3,10,6,[4]
--->标杆为4,左边开始交换,将比4大的交换
--->2,3,[4],6,10

------------>
---->[4]的左右两边分别递归,分成2部分
(递归1),标杆为2
---->2,[3]
(递归2),标杆为6
---->[6],10

....
结束:[2,3,4,6,10]

 

public class QuickSort {

	public static void sort(int[] sources,int low,int high){
		if(low < high){
			int key = sources[low];//此轮比较的key,左边比key大,右边比key小.
			int l = low;
			int h = high;
			int tmp;
			while(l < h){
				//因为我们不能创建额外的数组,所以才取了"交换"数据的方式.
				//从右边开始,将比key大的交换到过来.
				while(l < h && sources[h] >= key){
					h--;
				}
				//右边找到了比key大的.
				if(l < h){
					//交换顺序
					tmp = sources[l];
					sources[l] = sources[h];
					sources[h] = tmp;
				}
				//从左边开始,将比key小的交换过来
				while(l < h && sources[l] <= key){
					l++;
				}
				if(l < h){
					tmp = sources[l];
					sources[l] = sources[h];
					sources[h] = tmp;
				}
			}
			sort(sources, low, l-1);
			sort(sources, l+1, high);
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {2,15,3,100,87,-1,34,25,77,80,62,11,7,2,55,22};
		sort(sources, 0, sources.length -1);
		System.out.println(Arrays.toString(sources));

	}

}

 

三.归并排序

特点: 速度快,不过需要额外的一些存储空间(存储当前递归中有序区),内部基于递归,不适合数据量较大的场景.

思路:分治法,将数组逐步拆分为"组",直到最小的"组",然后每个组内排序,然后依次和相邻的组"排序合并",其中"排序".其内部排序非常简单.直接比较.

 

场景:算法稳定,适合元素个数较多时,时间复杂度O(n*logn),空间复杂度O(1)

原始数组:[4,3,10,6,2]
过程:首先将原始数组拆分为更小的组,然后一次对“组”进行排序
------------>
--->拆分
             [4,3,10,6,2]
                  |
        [4,3]     [10,6,2]
          |           |
         
       [4],[3]   [10,6],[2]
          |           |
       [4],[3]   [10],[6],[2]
--->合并与排序,从底部开始(递归中)
       [4],[3]   [10],[6],[2]
          |           |
        [3,4]     [6,10],[2]
          |           |
        [3,4]      [2,6,10]
                |
           [2,3,4,6,10]
....
结束:[2,3,4,6,10]

 

public class MergeSort {
	/**
	 * 对指定区间的数据进行排序,将begin~end之间的数据分成两部分
	 * @param sources
	 * @param begin
	 * @param end
	 */
	public static void sort(int[] sources,int begin,int end){
		if(begin < end){
			int range = end - begin;
			int mid = begin + range/2;
			sort(sources,begin,mid);//左段
			sort(sources,mid + 1,end);//右端
			merge(sources, begin, mid, end);
		}
	}
	
	/**
	 * 对begin~mid,mid+1 ~end两段区间中的数据进行排序并合并
	 * @param sources
	 * @param begin
	 * @param mid
	 * @param end
	 */
	private static void merge(int[] sources,int begin,int mid,int end){
		int[] tmp = new int[end - begin + 1];
		int b1 = begin;
		int e1 = mid;
		int b2 = mid+1;
		int e2 = end;
		int i=0;
		for(;b1 <= e1 && b2 <= e2 ; i++){
			//填充tmp数组,并依此在两段数据区域中找到最小的
			if(sources[b1] <= sources[b2]){
				tmp[i] = sources[b1];
				b1++;
			}else{
				tmp[i] = sources[b2];
				b2++;
			}
		}
		//到此为止,两段数据区域,已经至少一个被扫描完毕
		if(b1 > e1){
			//如果b1~e1扫描完毕,那么可能b2~e2还有剩余
			for(int t = b2;t < e2 + 1; t++){
				tmp[i] = sources[t];
				i++;
			}
		}
		if(b2 > e2){
			//如果b2~e2扫描完毕,那么可能b1~e1还有剩余
			for(int t = b1;t < e1 + 1; t++){
				tmp[i] = sources[t];
				i++;
			}
		}
		//replace and fill:将tmp数组的数据,替换到source中,begin~end
		//因为此时tmp中的数据是排序好的
		i=0;
		for(int t= begin;t <= end; t++){
			sources[t] = tmp[i];
			i++;
		}
		tmp = null;//
	}
	
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {1,0,20,8,13,3,4,7,-1};
		sort(sources,0,sources.length -1 );
		System.out.println(Arrays.toString(sources));

	}

}

 

四.堆排序

特点:速度快,适合大数据量排序,无额外空间消耗,

思路: 将原始数据看做一个"二叉树",首先构建一个"大顶堆":从最后一个(层)非叶子节点开始倒序遍历整个树,依次比较当前节点和它的左右子节点的大小,将较大的值和当前节点交换,树遍历结束后,那么树的根(堆顶)肯定是数组中最大的元素.这个过程称为"构建初始堆".

    当"初始堆"构建完毕,最大的元素放在了"堆顶",将"堆顶"的元素和数组的最后一个元素交换,由此可见,数组的最后元素在此后的排序中,已经不需要参与了.那么剩余的元素集合,就是"无序区域".

    接下来,对"无序区域"的排序方式和构建"初始堆"过程一样.直到整个"树"被遍历结束.

 

场景:算法不稳定,适合元素个数较多时,时间复杂度O(n*logn),空间复杂度O(1)

原始数组:[4,3,10,6,2,1]
过程:首先构建一次“初始堆”,然后基于“初始堆”进行“交换”
------------->按照元素顺序,构建成树
          [4]
       |       |
     [3]      [10]
      |         |
   [6] [2]     [1]
-------------->初始堆,从树的叶子节点开始向上进行,最终需要将最大的元素,交换到“顶”部
-------------->每个节点都和其左右子节点进行比较,将最大的元素,和当前节点交换,如果交换过程中,有打破"大顶堆"原则,将递归.
++++++++++++++
          [4]
       |       |
     [6]      [10]
      |         |
   [3] [2]     [1]
因为[6],[3],[2]中,6最大,因此6需要和3交换位置。至此,[3],[10]两个节点已经肃清
++++++++++++++
          [10]
       |       |
     [6]      [4]
      |         |
   [3] [2]     [1]
因为在[4],[6],[10]中,10最大,因此4需要和10交换位置;此过程依次进行,直到根节点。
到此为止数组为[10,6,4,3,2,1],全部为“无序区”
---------------->交换与排序
将堆顶的元素与“无序区”中最后一个元素交换,“1,6,4,3,2,[10]”,其中[10]为有序区,[10]之前的为“无序区”
此后,有序区,将不再参与“堆顶”元素的交换,为了便于理解,在下图中,我们暂且将“有序区”中的元素移除树
++++++++++++++
          [1]
       |       |
     [6]      [4]
      |         
   [3] [2]     

接下来,和“初始堆”的过程一样:从树的底部往上,比较节点,最大元素放在“顶部”,并将其交换到“有序区”
++++++++++++++
          [6]
       |       |
     [1]      [4]
      |         
   [3] [2]
++++++++++++++因为1调换位置后,[1][3][2]不满足大顶堆,递归
          [6]
       |       |
     [3]      [4]
      |         
   [1] [2]
++++++++++++++(6交换到有序区,即[6]和最底层叶子节点[2]交换)
          [2]
       |       |
     [1]      [4]
      |         
   [3] 
++++++++++++++(继续调整堆顶,基于交换原则,[2]和[4]交换)
          [4]
       |      | 
     [3]     [2]
      |         
   [1] 
++++++++++++++(4交换到有序区,即[4]与最底层叶子节点[1]交换)     
     [1]      
      |         
   [3] [2]
.....
最终数组为:[1,2,3,4,6,10]

 

public class MaxHeapSort {

	public static void sort(int[] sources,int length){
		//堆将会以"二叉树"的方式构建,在逻辑上,需要确保"左右"两边树高一致.
		int i = length/2;
		//首先构建一次"初始堆",从树的叶子节点"倒序"遍历所有的节点
		//此次的目的,就是将整棵树中,值最大的节点,交换到树的根部.
		int max = length - 1;//最大索引
		for(; i>=0; i--){
			heap(sources,i,max);
		}
		//"交换"位置,每循环一次,都会把当前树的"根"(也是最大值)和"当前无序区域"的最后一个位置交换
		//交换之后,最后一个位置是最大值,此位置之前的节点,为"无序区域".
		//每执行一次heap方法,都会将当前"无序区域"的最大值放在"根"部.
		//每交换一次,"无序区域"的长度-1(因为最大值已经产生,并交换到了当前"区域"的尾部,下一次heap,就不需要参与)
		for(i = max; i>= 1;i--){
			int tmp = sources[0];
			sources[0] = sources[i];
			sources[i] = tmp;
			max--;//将source[max]"移动"到有序区,将不再参与此后的heap过程
			heap(sources, 0, max);//从"堆顶"调整,每次只需比较最上层2个节点
		}
	}
	
	/**
	 * 
	 * @param sources 原始数组
	 * @param i 当前节点位置
	 * @param max (需要比较的范围,即剩余的无序数组的最大索引)
	 */
	private static void heap(int[] sources,int i,int max){
		//计算出当前"节点i"的左右子节点的位置(在数组中的位置)
		int l = 2 * i + 1;//左
		int r = 2 * i + 2;//右
		int c = i;//当前索引
		//找出"当前节点""左右子节点"三个节点中,最大的值,以构建"大顶堆"
		if(l <= max && sources[l] > sources[c]){
			c = l;
		}
		if(r <= max && sources[r] > sources[c]){
			c = r;
		}
		if(c != i){
			//交换数据
			int tmp = sources[i];
			sources[i] = sources[c];
			sources[c] = tmp;
			heap(sources, c, max);//每次交换,重新调整,满足"大顶堆"要求
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {11,0,20,8,13,3,4,7};
		sort(sources,sources.length);
		System.out.println(Arrays.toString(sources));

	}

}

 

五.选择排序/交换排序

特点:每次遍历"无序区域"时,找到一个最小的值,并和"无序区域"的第一个元素交换位置,至此"无序区域"的剩余元素,继续执行上述遍历过程..它和"冒泡排序"异曲同工.【从无序区中“选择”出最小的元素,交换到“无序区”的头部】

 

场景:算法不稳定,元素个数较小时,时间复杂度O(n^2),空间复杂度O(1)

 

原始数组:[4,3,10,6,2,1]
过程:将数组分为“有序区”,“无序区”,每次遍历都从“无序区”找到最小的元素“交换”到“有序区”的最前面
------------->[]4,3,10,6,2,1;初始时有序区为空(实现有所差异)
---->[1],4,3,10,6,2   当前无序区中,1为最小,那么把1放在“无序区”的最前面,我们也可以认为1位于有序区的最后面
---->[1,2],4,3,10,6    将2放在“无序区”的最前面,也可以认为为“有序区”的最后面
---->[1,2,3]4,10,6
---->[1,2,3,4],10,6
---->[1,2,3,4,6],10
....

 

public class SelectSort {

	public static void sort(int[] sources){
		int length = sources.length;
		int n;
		for(int i=0; i < length -1; i++){
			n = i;
			for(int j= i+1; j< length; j++){
				if(sources[j] < sources[i]){
					n = j;
				}
			}
			if(n != i){
				int tmp = sources[i];
				sources[i] = sources[n];
				sources[n] = tmp;
			}
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {2,15,3,100,87,-1,34,25,77,80,62,11,7,2,55,22};
		sort(sources);
		System.out.println(Arrays.toString(sources));
	}
}

 

六.插入排序:

特点:和冒泡排序很像,"有序区域"在数组的前部,依次遍历"无序区域"中的元素,并将"无序区域"中的第一个元素,和"有序区域"中的元素比较(从后往前),并将此元素不断向前"推进".它和“选择排序”也很相似。[依次将无序区中的元素“插入”到有序区中]

 

场景:算法稳定,元素格式较小时,时间复杂度O(n^2),空间复杂度O(1)

原始数组:[4,3,10,6,2,1]
过程:和“选择排序”很像,只不过“无序区”中的元素是和“有序区”比较(选择排序,是从无序区中“选择”最小的,放入有序区),然后一次在“有序区”中交换位置。
------------->[4],3,10,6,2,1;初始时有序区为空也可以为第一个元素(实现有所差异)
---->[3,4],10,6,2,1   首先将无序区中的3,和有序区中的4比较,并交换位置,此时3进入有序区
---->[3,4,10],6,2,1   将10与[3,4]从后往前比较,并交换位置
---->[3,4,6,10],2,1
---->[2,3,4,6,10],1
....

 

public class InsertSort {

	public static void sort(int[] sources){
		int length = sources.length;
		int n;
		for(int i = 1; i < length; i++){
			n = i - 1;
			int cv = sources[i];//当前需要比较的元素
			//依次遍历此元素所在位置之前的元素集合(此集合为已排序的集合)
			while(n >=0 && cv < sources[n]){
				//如果当前元素,比"已排序集合"的元素值小
				//往前交换位置,类似于"冒泡"
				sources[n+1] = sources[n];
				sources[n] = cv;
				n--;
			}
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {0,2,15,3,100,87,-1,34};
		sort(sources);
		System.out.println(Arrays.toString(sources));

	}

}

 

七.希尔排序

特点:"列排序",将数组数据,在逻辑上分成“多个列”,然后每一列排序。每次遍历成功后,列数减半,继续排序,直到最后为一列时,进行一次插入排序。速度比“插入排序”要快,因为减少了元素交换的次数,是“插入排序”的改进版本。

 

场景:算法不稳定,元素个数较小时,时间复杂度O(n*logn),空间复杂度O(n^s),其中s为组数。

 

原始数组:[4,3,10,6,2,1,8,5]
过程:"列"排序,依次将数组,分为N个列(length/2),然后对每一列进行排序。直到最后列数为1.(每次排序之后,列数减半)

------------>8个元素,分为4列
4,3,10,6
2,1,8,5
----->对每一列进行排序(竖向)
2,1,8,5
4,3,10,6
此时数组为[2,1,8,5,4,3,10,6]
----->然后分为2列(4列变为2列,列数减半)
2,1
8,5
4,3
10,6
----->排序
2,1
4,3
8,5
10,6
此时数组为[2,1,4,3,8,5,10,6]
------>然后为1列,直接对数组进行“插入排序”即可

 

public class ShellSort {

	
	/**
	 * 我们可以简单的认为shell排序就是“列排序”
	 * @param sources
	 */
	public static void sort(int[] sources){
		int l = sources.length;
		int i = l;
		do{
			i = i/2;//列数,“在逻辑上”有多少列数据,
			insert(sources,i,l);
		}while(i > 1);
	}
	
	private static void insert(int[] sources,int i,int length){
		int j;
		//i为当前的列数
		//lenght:为总数据两
		//j为当前排序时,在一列中所处的位置
		for(int t = i;t < length; t++){
			j = t - i;
			int cv = sources[t];
			while(j >=0 && cv < sources[j]){
				sources[j + i] = sources[j];
				sources[j] = cv;
				j = j-i;
			}
		}
	}
	/**
	 * @param args
	 */
	public static void main(String[] args) {
		int[] sources = {2,15,3,100,87,3,-1,3,0};
		sort(sources);
		System.out.println(Arrays.toString(sources));

	}
}

 

分享到:
评论

相关推荐

    各种排序算法比较(java实现)

    `Algorithm.java`文件可能包含了这些排序算法的Java实现代码,而`常见排序算法的实现与性能比较.doc`文档则可能详细比较了这些算法的性能和适用场景。`readme.txt`文件可能是对整个项目的简要说明,包括如何运行和...

    Java各种排序算法代码.zip

    这个名为"Java各种排序算法代码.zip"的压缩包包含了一系列实现不同排序算法的Java源代码。排序算法是计算机科学中的基本概念,用于对一组数据进行排列。下面将详细讨论这些算法及其在Java中的实现。 1. 冒泡排序...

    Java选择排序算法源码

    本主题将深入探讨Java实现的选择排序算法,这是一种简单直观的排序算法,适合新手学习。 选择排序(Selection Sort)的基本思想是,在未排序的序列中找到最小(或最大)的元素,放到序列的起始位置,然后再从剩余未...

    Java各种排序算法(含代码)

    在编程领域,排序算法是数据结构与算法学习中的基础部分,尤其在Java中,了解和掌握各种排序算法对于提升程序性能至关重要。以下是对标题和描述中提到的Java各种排序算法的详细解释,以及它们的实现代码概述。 1)*...

    Java排序算法实现

    Java排序算法实现 Java排序算法实现 Java排序算法实现

    Java所有排序算法大全

    在编程领域,排序算法是计算机科学中的核心概念,特别是在Java这样的高级编程语言中。本文将深入探讨Java中常见的几种排序算法,包括它们的工作原理、优缺点以及如何在实际编程中应用。 首先,我们来看`BubbleSort...

    Java各种排序算法_随机数

    Java 排序算法概述 Java 排序算法是指在 Java 编程语言中使用的各种排序方法,旨在对数据进行有序排列。常见的排序算法有插入排序、交换排序、选择排序、归并排序、分配排序等。 插入排序是最基本的一种排序算法,...

    Java冒泡排序算法

    冒泡排序是一种基础且经典的排序算法,主要应用于教学和理解排序的基本原理。...以上就是关于Java实现冒泡排序算法的相关知识点,通过学习和实践,不仅可以掌握冒泡排序,也能为学习更复杂的排序算法打下坚实的基础。

    Java各种排序算法代码

    在编程领域,排序算法是计算机科学中的核心概念,尤其是在Java这样的高级编程语言中。Java提供了丰富的内置库函数,如Arrays.sort(),可以方便地对数组进行排序。然而,理解并掌握各种排序算法对于优化程序性能、...

    Java各种排序算法代码.

    在编程领域,排序算法是计算机科学中的核心概念,特别是在Java这样的高级编程语言中。排序算法是用来组织和优化数据结构的关键工具,它可以帮助我们快速查找、分析和处理数据。本资源包含的是Java实现的各种常见排序...

    Java 选择排序 算法

    Java选择排序算法是一种简单直观的排序算法,它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。这种算法对列表中的数据进行了一次完整...

    java排序算法插入选择冒泡

    java排序算法java排序算法插入选择冒泡java排序算法插入选择冒泡

    常用排序算法java演示

    本文将深入探讨标题"常用排序算法java演示"中涉及的知识点,包括排序算法的原理、Java实现方式以及其在实际应用中的图形演示。 首先,让我们逐一了解几种常见的排序算法: 1. **冒泡排序(Bubble Sort)**:这是一...

    Java 快速排序算法

    Java 快速排序,目前来说效率很高的一种排序算法,好理解。

    Java常见排序算法源码集.rar

    5. **归并排序(Merge Sort)**:也是基于分治法的排序算法,将序列分为两半,分别进行排序,然后将两个有序子序列合并成一个完整的有序序列。归并排序在任何情况下都能保证O(n log n)的时间复杂度。 6. **堆排序...

    Java常用排序算法&程序员必须掌握的8大排序算法+二分法查找

    4. **优化与应用**:根据实际场景选择合适的排序算法,并考虑如何优化,比如使用并行或并发策略提高排序速度。 综上所述,掌握这些排序算法和二分查找技巧对于Java程序员来说至关重要,它们不仅能提升编程能力,也...

    java版本排序算法

    ### Java版本排序算法详解 #### 插入排序 插入排序是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。在Java中,我们可以创建一个`...

Global site tag (gtag.js) - Google Analytics