Memcached分布式算法在网上一搜可以找到一大片了,不过对于Memcached分布式算法中使用的consistent hashing算法,笔者一直没有彻底搞明白,尤其是具体是如何实现,包括虚拟节点的作用,以及为何会在缓存服务器变动的时候将影响降到最小十分迷惑。今天笔者有幸拜读了一篇质量很高的关于”Memcached一致性hash算法consistent hashing”的文章,摘录下来和大家一起分享,希望能对大家有所帮助。
consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛;
1 基本场景
比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache ;
- hash(object)%N
hash(object)%N
一切都运行正常,再考虑如下的两种情况;
- 一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m 从 cache 中移除,这时候 cache 是 N-1 台,映射公式变成了 hash(object)%(N-1) ;
- 由于访问加重,需要添加 cache ,这时候 cache 是 N+1 台,映射公式变成了 hash(object)%(N+1) ;
1 和 2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。有什么方法可以改变这个状况呢,这就是 consistent hashing…
2 hash 算法和单调性
Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:
单调性:单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。
容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。
3 consistent hashing 算法的原理
consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在 key 映射关系,尽可能的满足单调性的要求。下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。
3.1 环形hash 空间
考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环,如下面图 1 所示的那样。
3.2 把对象映射到hash 空间
接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash 值 key 在环上的分布如图2 所示。
- hash(object1) = key1;
- ... ... ...
- hash(object4) = key4;
hash(object1) = key1; ... ... ... hash(object4) = key4;
3.3 把cache 映射到hash 空间
Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并且使用相同的 hash 算法。假设当前有 A,B 和 C 共 3 台 cache ,那么其映射结果将如图 3 所示,他们在 hash 空间中,以对应的 hash 值排列。
- hash(cache A) = key A;
- ... ... ...
- hash(cache C) = key C;
hash(cache A) = key A; ... ... ... hash(cache C) = key C;
说到这里,顺便提一下 cache 的 hash 计算,一般的方法可以使用 cache 机器的 IP 地址或者机器名作为 hash 输入。
3.4 把对象映射到cache
现在 cache 和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,接下来要考虑的就是如何将对象映射到 cache 上面了。
在这个环形空间中,如果沿着顺时针方向从对象的 key 值出发,直到遇见一个 cache ,那么就将该对象存储在这个 cache 上,因为对象和 cache 的 hash 值是固定的,因此这个 cache 必然是唯一和确定的。这样不就找到了对象和 cache 的映射方法了吗?!
依然继续上面的例子(参见图 3 ),那么根据上面的方法,对象 object1 将被存储到 cache A 上; object2 和 object3 对应到 cache C ; object4 对应到 cache B;
3.5 考察cache 的变动
前面讲过,通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache 会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析 consistent hashing 算法。
3.5.1 移除 cache
考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是那些沿 cache B 逆时针遍历直到下一个 cache ( cache C )之间的对象,也即是本来映射到 cache B 上的那些对象。因此这里仅需要变动对象 object4 ,将其重新映射到 cache C 上即可;参见图 4 。
3.5.2 添加 cache
再考虑添加一台新的 cache D 的情况,假设在这个环形 hash 空间中, cache D 被映射在对象 object2 和 object3 之间。这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache ( cache B )之间的对象(它们是也本来映射到 cache C 上对象的一部分),将这些对象重新映射到 cache D 上即可。因此这里仅需要变动对象 object2 ,将其重新映射到 cache D 上;参见图 5 。
4 虚拟节点
考量 Hash 算法的另一个指标是平衡性 (Balance) ,定义如下:
平衡性:平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。
hash算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上,比如在上面的例子中,仅部署 cache A 和 cache C 的情况下,在4个对象中, cache A 仅存储了 object1 ,而 cache C 则存储了 object2 、 object3 和 object4 ;分布是很不均衡的。
为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义:
“虚拟节点”( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。
仍以仅部署 cache A 和 cache C 的情况为例,在图 4 中我们已经看到, cache 分布并不均匀。现在我们引入虚拟节点,并设置“复制个数”为 2 ,这就意味着一共会存在 4 个“虚拟节点”, cache A1, cache A2 代表了 cache A ; cache C1, cache C2 代表了 cache C ;假设一种比较理想的情况,参见图 6 。
此时,对象到“虚拟节点”的映射关系为:
- objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;
objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;
因此对象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。查询物体所在 cache 时的映射关系如图 7 所示。
“虚拟节点”的 hash 计算可以采用对应节点的 IP 地址加数字后缀的方式。例如假设 cache A 的 IP 地址为 202.168.14.241 。
引入“虚拟节点”前,计算 cache A 的 hash 值:
- Hash(“202.168.14.241”);
- 引入“虚拟节点”后,计算“虚拟节”点 cache A1 和 cache A2 的 hash 值:
- Hash(“202.168.14.241#1”); // cache A1
- Hash(“202.168.14.241#2”); // cache A2
Hash(“202.168.14.241”); 引入“虚拟节点”后,计算“虚拟节”点 cache A1 和 cache A2 的 hash 值: Hash(“202.168.14.241#1”); // cache A1 Hash(“202.168.14.241#2”); // cache A2
5 小结
Consistent hashing 的基本原理就是这些,具体的分布性等理论分析应该是很复杂的,不过一般也用不到。
相关推荐
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,它解决了在分布式环境中数据分片和负载均衡的问题。在传统的哈希算法中,如果增加或减少服务器节点,会导致大量数据重新分配,而一致性哈希...
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,旨在解决在分布式环境中数据分布不均匀的问题。Ketama算法是基于一致性哈希的一种优化实现,由Last.fm公司的Simon Willison提出,其目标是在...
在分布式缓存系统如Memcached或Redis中,一致性哈希算法被广泛使用。当用户请求数据时,根据数据的键进行哈希运算,然后在哈希环上找到最近的服务器节点来存储或检索数据。这种方式确保了数据与服务器之间的绑定关系...
一致性哈希算法应用及优化是IT领域中分布式系统设计的核心技术之一,特别是在处理大规模数据分布与缓存系统中,其重要性不言而喻。本文将深入探讨一致性哈希算法的基本概念、工作原理以及在实际场景中的应用和优化...
一致性哈希算法(Consistent Hashing)是一种在分布式系统中实现负载均衡的算法,尤其在分布式缓存如Memcached和Redis等场景下广泛使用。它解决了传统哈希算法在节点增减时导致的大量数据迁移问题,提高了系统的可用...
一致性哈希算法(Consistent Hashing)是一种在分布式系统中平衡数据分布的策略,尤其适用于缓存服务如Memcached或Redis。它的核心思想是通过哈希函数将对象映射到一个固定大小的环形空间中,然后将服务器也映射到这个...
一致性哈希算法是一种在分布式系统中解决负载均衡和数据分布问题的有效方法。在传统的哈希算法中,当添加或移除服务器节点时,大部分数据需要重新映射,导致大规模的数据迁移。而一致性哈希算法通过特定的设计,能够...
此外,一致性哈希算法在分布式缓存如Memcached、Redis中也得到了广泛应用。它不仅简化了数据分布的逻辑,还允许动态扩展和收缩集群规模,无需大规模的数据迁移。 在文件名为“distribute-mysql”的压缩包中,可能...
一致性哈希算法的工作流程如下: 1. 所有节点(包括服务器和数据)被哈希成一个唯一的值,并映射到一个闭合的哈希环上。 2. 当查找一个数据的存储位置时,同样对数据的键进行哈希,然后在哈希环上找到该键对应的点。...
在实际应用中,一致性哈希算法不仅可以用于负载均衡,还可以应用于分布式数据库的分片、分布式缓存系统如Memcached或Redis的集群部署,以及P2P网络中的数据分布等场景。通过精心设计和优化,一致性哈希能够有效地...
一致性哈希算法(Consistent Hashing)是一种特殊的哈希算法,设计目的是为了在分布式缓存系统中解决节点动态增减时导致的数据分布不均问题。该算法最早在1997年的论文《Consistent Hashing and Random Trees》中被...
在这个Java实现中,我们看到的是Ketama一致性哈希算法,这是一种在实践中广泛应用的一致性哈希变体。 Ketama一致性哈希算法由Last.fm的工程师开发,其设计目标是优化分布式哈希表的性能,特别是在处理大量小键值对...
该算法旨在克服传统哈希算法在面对节点动态变化时的局限性,特别是在分布式系统中,如分布式缓存系统和负载均衡场景中,能够显著提高系统的稳定性和可扩展性。 #### 二、背景与问题定义 在构建分布式系统时,经常...
- **分布式缓存**:如Memcached、Redis集群中,一致性哈希用于确定数据应该存储在哪个节点上。 - **负载均衡**:在负载均衡器中,一致性哈希可以用来分配请求到不同的服务器,避免在动态调整服务器数量时大量请求...
1. "一致性哈希对缓存命中率的影响实验报告.doc":这份文档可能详细介绍了如何使用一致性哈希算法来分配和检索数据在Memcached中的存储,以及该算法如何影响缓存的命中率。一致性哈希是解决分布式缓存中数据分布不均...
**memcached** 是一个分布式内存对象缓存系统,它用于临时存储(缓存)网络应用的...通过对源码的学习,可以更深入理解其数据结构、一致性哈希实现方式以及与其他语言的接口设计,提升你在分布式缓存领域的专业技能。
一致性哈希是一种提供哈希表功能的方案,该方式使得添加或删除服务器节点不会显着更改密钥到服务器节点的映射。 用于一致性哈希的算法与libketama相同。 例如,有多种处理错误的方法,例如,当服务器不可用时,您...
在实际应用中,一致性哈希算法通常用于分布式缓存系统中,如Redis、Memcached集群。通过一致性哈希,系统能够实现以下目标: - **节点动态扩展**:当系统需要扩展节点时,一致性哈希可以保证只有部分缓存数据需要...