《推荐系统》
基本信息
原书名:Recommender systems:An introduction
作者: (奥地利) Dietmar Jannach Markus Zanker Alexander Felfernig Gerhard Friedrich
译者: 蒋凡
丛书名: 图灵程序设计丛书
出版社:人民邮电出版社
ISBN:9787115310699
上架时间:2013-6-7
出版日期:2013 年6月
开本:16开
页码:244
版次:1-1
所属分类:计算机
更多关于 》》》《推荐系统》
内容简介
计算机书籍
《推荐系统》全面阐述了开发最先进推荐系统的方法,其中呈现了许多经典算法,并讨论了如何衡量推荐系统的有效性。书中内容分为基本概念和最新进展两部分:前者涉及协同推荐、基于内容的推荐、基于知识的推荐、混合推荐方法,推荐系统的解释、评估推荐系统和实例分析;后者包括针对推荐系统的攻击、在线消费决策、推荐系统和下一代互联网以及普适环境中的推荐。此外,本书还包含大量的图、表和示例,有助于读者理解和把握相关知识。
《推荐系统》适用于从事搜索引擎、推荐算法、数据挖掘等研发工作的专业人员以及对推荐系统感兴趣的读者。
目录
《推荐系统》
第1章 引言 1
1.1 第一部分:基本概念 2
1.1.1 协同过滤推荐 2
1.1.2 基于内容的推荐 2
1.1.3 基于知识的推荐 3
1.1.4 混合推荐方法 4
1.1.5 推荐系统的解释 4
1.1.6 评估推荐系统 4
1.1.7 案例研究 5
1.2 第二部分:最新进展 5
第一部分 基本概念
第2章 协同过滤推荐 8
2.1 基于用户的最近邻推荐 8
2.1.1 第一个例子 8
2.1.2 更好的相似度和赋权体系 10
2.1.3 选择近邻 11
2.2 基于物品的最近邻推荐 11
2.2.1 余弦相似度度量 12
2.2.2 基于物品过滤的数据预处理 13
.2.3 关于评分 14
2.3.1 隐式和显式评分 14
2.3.2 数据稀疏和冷启动问题 15
2.4 更多基于模型和预处理的方法 16
2.4.1 矩阵因子分解 17
2.4.2 关联规则挖掘 20
2.4.3 基于概率分析的推荐方法 22
2.5 近来实际的方法和系统 25
2.5.1 slope one预测器 26
2.5.2 google新闻个性化推荐引擎 28
2.6 讨论和小结 30
2.7 书目注释 31
第3章 基于内容的推荐 32
3.1 内容表示和相似度 33
3.1.1 向量空间模型和tf-idf 34
3.1.2 向量空间模型的改进及局限 35
3.2 基于内容相似度检索 36
3.2.1 最近邻 36
3.2.2 相关性反馈——rocchio方法 37
3.3 其他文本分类方法 40
3.3.1 基于概率模型的方法 40
3.3.2 其他线性分类器和机器学习 43
3.3.3 显式决策模型 44
3.3.4 特征选择 45
3.4 讨论 47
3.4.1 对比评估 47
3.4.2 局限 47
3.5 小结 48
3.6 书目注释 49
第4章 基于知识的推荐 51
4.1 介绍 51
4.2 知识表示法和推理 52
4.2.1 约束 52
4.2.2 实例与相似度 54
4.3 与基于约束推荐系统交互 55
4.3.1 默认设置 55
4.3.2 处理不满意的需求和空结果集 57
4.3.3 提出对未满足需求的修改建议 61
4.3.4 对基于物品/效用推荐结果的排序 61
4.4 与基于实例的推荐系统交互 64
4.4.1 评价 65
4.4.2 混合评价 67
4.4.3 动态评价 67
4.4.4 高级的物品推荐方法 70
4.4.5 评价多样性 71
4.5 应用实例 72
4.5.1 vita——基于约束的推荐系统 72
4.5.2 entree——基于实例的推荐系统 77
4.6 书目注释 79
第5章 混合推荐方法 80
5.1 混合推荐的时机 81
5.1.1 推荐理论框架 81
5.1.2 混合设计 82
5.2 整体式混合设计 83
5.2.1 特征组合的混合方案 84
5.2.2 特征补充的混合方案 85
5.3 并行式混合设计 87
5.3.1 交叉式混合 87
5.3.2 加权式混合 88
5.3.3 切换式混合 89
5.4 流水线混合设计 90
5.4.1 串联混合 90
5.4.2 分级混合 91
5.5 讨论和小结 92
5.6 书目注释 92
第6章 推荐系统的解释 94
6.1 介绍 94
6.2 基于约束的推荐系统中的解释 96
6.2.1 实例 97
6.2.2 通过推导生成解释 99
6.2.3 可靠解释的分析与概述 100
6.2.4 可靠解释 102
6.3 基于实例推荐系统的解释 103
6.4 协同过滤推荐系统的解释 106
6.5 小结 108
第7章 评估推荐系统 109
7.1 介绍 109
7.2 评估研究的一般特性 110
7.2.1 总论 110
7.2.2 评估方案的实验对象 111
7.2.3 研究方法 113
7.2.4 评估环境 115
7.3 主流推荐方案 115
7.4 历史数据集评估 116
7.4.1 方法论 116
7.4.2 衡量标准 117
7.4.3 结果的分析 121
7.5 其他评估方案 121
7.5.1 实验性研究方案 122
7.5.2 准实验研究方案 122
7.5.3 非实验研究方案 123
7.6 小结 123
7.7 书目注释 124
第8章 案例分析:移动互联网个性化游戏推荐 125
8.1 应用与个性化概述 126
8.2 算法和评级 128
8.3 评估 128
8.3.1 测量1:我的推荐 129
8.3.2 测量2:售后推荐 131
8.3.3 测量3:起始页推荐 133
8.3.4 测量4:演示版下载的整体效果 135
8.3.5 测量5:整体效果 136
8.4 小结与结论 138
第二部分 最新进展
第9章 针对协同推荐系统的攻击 140
9.1 第一个例子 141
9.2 攻击维度 141
9.3 攻击类型 142
9.3.1 随机攻击 142
9.3.2 均值攻击 143
9.3.3 造势攻击 143
9.3.4 局部攻击 143
9.3.5 针对性的打压攻击 144
9.3.6 点击流攻击和隐式反馈 144
9.4 效果评估和对策 145
9.4.1 推举攻击 145
9.4.2 打压攻击 146
9.5 对策 146
9.6 隐私方面——分布式协同过滤 148
9.6.1 集中方法:数据扰动 149
9.6.2 分布式协同过滤 150
9.7 讨论 153
第10章 在线消费决策 155
10.1 介绍 155
10.2 环境效应 156
10.3 首位/新近效应 159
10.4 其他效应 160
10.5 个人和社会心理学 161
10.6 书目注释 167
第11章 推荐系统和下一代互联网 168
11.1 基于信任网络的推荐系统 169
11.1.1 利用显式的信任网络 169
11.1.2 信任度度量方法和效果 171
11.1.3 相关方法和近期进展 172
11.2 大众分类法及其他 174
11.2.1 基于大众分类法的推荐 174
11.2.2 推荐标签 181
11.2.3 在分享媒体中推荐内容 183
11.3 本体过滤 185
11.3.1 通过分类改进过滤 185
11.3.2 通过属性改进过滤 188
11.4 从网络抽取语义 189
11.5 小结 191
第12章 普适环境中的推荐 192
12.1 介绍 192
12.2 上下文感知推荐 193
12.3 应用领域 195
12.4 小结 197
第13章 总结和展望 198
13.1 总结 198
13.2 展望 198
参考文献 201
索引 223
相关推荐
Python推荐系统是一个广泛的领域,它涉及机器学习、数据挖掘和人工智能等多个技术,广泛应用于电商、社交、音乐、新闻等各个行业。本合集包含了多个基于Python实现的推荐系统项目,涵盖了从基础到进阶的各种应用场景...
高校学生饮食推荐-高校学生饮食推荐系统-高校学生饮食推荐系统源码-高校学生饮食推荐管理系统-高校学生饮食推荐管理系统java代码-高校学生饮食推荐系统设计与实现-基于springboot的高校学生饮食推荐系统-基于Web的...
推荐系统是现代互联网服务中不可或缺的一部分,它通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容或产品推荐。本篇文章将深入探讨推荐系统的实践,尤其是与Python编程相关的实现方法。 一、推荐系统基础 ...
基于Hadoop图书推荐系统源码+数据库.zip基于Hadoop图书推荐系统源码+数据库.zip基于Hadoop图书推荐系统源码+数据库.zip基于Hadoop图书推荐系统源码+数据库.zip基于Hadoop图书推荐系统源码+数据库.zip基于Hadoop图书...
人工智能-推荐系统-音乐推荐-基于用户得分前100歌曲构造推荐系统 基于用户得分前100歌曲构造推荐系统 1.获取音乐足够多的用户id(这里只爬取了10w用户id) 2.根据10w用户id,爬取他们对应的网易云音乐给他们打分的...
### 基于协同过滤算法的商品推荐系统设计与实现 #### 一、绪论 - **选题动因**:随着互联网技术的发展和电子商务平台的兴起,如何在海量的商品信息中帮助用户找到他们真正感兴趣的商品成为了商家面临的一个重大...
python基于django的图书推荐系统源码 python基于django的图书推荐系统源码 python基于django的图书推荐系统源码 python基于django的图书推荐系统源码 python基于django的图书推荐系统源码 python基于django...
新闻推荐-新闻推荐系统-新闻推荐系统源码-新闻推荐管理系统-新闻推荐管理系统java代码-新闻推荐系统设计与实现-基于springboot的新闻推荐系统-基于Web的新闻推荐系统设计与实现-新闻推荐网站-新闻推荐网站代码-新闻...
推荐系统是现代信息技术领域中的一个重要组成部分,特别是在大数据和人工智能时代,它已经成为个性化信息服务的核心手段。全局视角系统学习《推荐系统》旨在提供一个全面且深入的学习框架,帮助学习者理解推荐系统的...
尚硅谷大数据技术之电商推荐系统 本文档总结了尚硅谷大数据技术之电商推荐系统的架构设计和实现细节,该系统是一个基于大数据技术的电商推荐系统,旨在为电商网站提供个性化的商品推荐服务。 系统架构 该系统的...
基于python的动漫推荐系统的设计与实现代码 基于python的动漫推荐系统的设计与实现代码 基于python的动漫推荐系统的设计与实现代码 基于python的动漫推荐系统的设计与实现代码 基于python的动漫推荐系统的设计与实现...
在现代信息爆炸的时代,大数据推荐系统已成为各类在线平台不可或缺的一部分,它们通过分析用户的行为、兴趣和偏好,为用户提供个性化的内容推荐。本项目基于Python语言构建,利用大数据处理技术和机器学习算法,实现...
python基于协同过滤推荐算法的电影推荐系统源码 python基于协同过滤推荐算法的电影推荐系统源码 python基于协同过滤推荐算法的电影推荐系统源码 python基于协同过滤推荐算法的电影推荐系统源码 python基于协同过滤...
【标题】:“今日头条推荐系统”是关于如何利用先进的算法技术构建和优化个性化新闻推送平台的讲解。这个主题主要聚焦在如何通过智能算法为用户呈现最感兴趣的信息,提高用户体验和平台黏性。 【描述】:曹欢欢博士...
基于python实现的小说推荐系统源码+超详细注释(课程设计).zip基于python实现的小说推荐系统源码+超详细注释(课程设计).zip基于python实现的小说推荐系统源码+超详细注释(课程设计).zip基于python实现的小说推荐系统...
推荐系统是大数据和人工智能在日常生活中广泛应用的一个领域,它通过分析用户的历史行为、偏好和兴趣,为用户个性化地推荐商品、服务或内容。在这个场景中,我们有两个关键的数据集:`rating.csv` 和 `movie.csv`,...
**基于协同过滤的推荐系统** 推荐系统是一种广泛应用在电商、媒体和社交网络等领域的智能算法,旨在根据用户的历史行为和偏好,为用户推荐可能感兴趣的内容或产品。在本项目中,我们将关注一种常见的推荐系统算法...
### 电子商务推荐系统知识点概述 #### 一、电子商务推荐系统定义与构成 电子商务推荐系统是一种利用数据挖掘等技术,分析用户在电子商务平台上的行为模式,从而向用户推荐他们可能感兴趣的商品或服务的技术系统。...
音乐推荐系统是现代数字音乐服务的核心组成部分,它利用先进的数据挖掘和机器学习技术,为用户提供个性化的音乐体验。本项目围绕“音乐推荐系统的设计与实现”展开,旨在探索如何构建一个能够理解用户口味并准确推荐...