一. Latch 说明
1.1 Latch
在之前的一篇文章里的第四部分对Latch 有了说明,参考:
http://blog.csdn.net/tianlesoftware/archive/2010/08/20/5822674.aspx
Latch属于System Lock, 用于保护SGA区中共享数据结构的一种串行化锁定机制。Latch的实现是与操作系统相关的,尤其和一个进程是否需要等待一个latch、需要等待多长时间有关。
Latch是Oracle提供的轻量级锁资源,是一种能够极快地被获取和释放的锁,能快速,短时间的锁定资源,防止多个并发进程同时修改访问某个共享资源,它只工作在SGA中,通常用于保护描述buffer cache中block的数据结构。
比如SGA中,各种数据被反复从磁盘读取到内存,又被重新写回到磁盘上,如果有并发的用户做相同的事情,Oracle必须使用一种机制,来保证数据在读取的时候,只能由一个会话来完成,这种保护机制就是Latch。
并发(concurrency):是说有超过两个以上的用户对同样的数据做修改(可能包括插入,删除和修改)。
并行(parallel):是说将一件事情分成很多小部分,让每一部分同时执行,最后将执行结果汇总成最终结果。
与每个latch相联系的还有一个清除过程,当持有latch的进程成为死进程时,该清除过程就会被调用。Latch还具有相关级别,用于防止死锁,一旦一个进程在某个级别上得到一个latch,它就不可能再获得等同或低于该级别的latch。
Latch不会造成阻塞,只会导致等待。 阻塞是一种系统设计上的问题,等待是一种系统资源争用的问题。
1.2 有关SPin 的说明:
比如数据缓存中的某个块要被读取,我们会获得这个块的 latch,这个过程叫做spin,另外一个进程恰好要修改这个块,他也要spin这个块,此时他必须等待,当前一个进程释放latch后才能spin住,然后修改,如果多个进程同时请求的话,他们之间将出现竞争,没有一个入队机制,一旦前面进程释放所定,后面的进程就蜂拥而上,没有先来后到的概念,并且这一切都发生的非常快,因为Latch的特点是快而短暂。
SPIN 与 休眠:
休眠意味着暂时的放弃CPU,进行上下文切换(context switch),这样CPU要保存当前进程运行时的一些状态信息,比如堆栈,信号量等数据结构,然后引入后续进程的状态信息,处理完后再切换回原来的进程状态,这个过程如果频繁的发生在一个高事务,高并发进程的处理系统里面,将是个很昂贵的资源消耗,所以Oracle选择了spin,让进程继续占有CPU,运行一些空指令,之后继续请求,继续spin,直到达到_spin_count值,这时会放弃CPU,进行短暂的休眠,再继续刚才的动作。
1.3 进程获取Latch的过程:
任何时候,只有一个进程可以访问内存中的某一个数据块,如果进程因为别的进程正占用块而无法获得Latch时,他会对CPU进行一次spin(旋转),时间非常的短暂,spin过后继续获取,不成功仍然spin,直到 spin次数到达阀值限制(这个由隐含参数_spin_count指定),此时进程会停止spin,进行短期的休眠,休眠过后会继续刚才的动作,直到获取块上的Latch为止。
进程休眠的时间也是存在算法的,他会随着spin次数而递增,以厘秒为单位,如1,1,2,2,4,4,8,8,。。。休眠的阀值限制由隐含参数_max_exponential_sleep控制,默认是2秒,如果当前进程已经占用了别的Latch,则他的休眠时间不会太长(过长会引起别的进程的Latch等待),此时的休眠最大时间有隐含参数_max_sleep_holding_latch决定,默认是4厘秒。这种时间限制的休眠又称为短期等待。
另外一种情况是长期等待锁存器(Latch Wait Posting),此时等待进程请求Latch不成功,进入休眠,他会向锁存器等待链表(Latch Wait List)压入一条信号,表示获取Latch的请求,当占用进程释放Latch时会检查Latch Wait List,向请求的进程传递一个信号,激活休眠的进程。Latch Wait List是在SGA区维护的一个进程列表,他也需要Latch来保证其正常运行,默认情况下share pool latch和library cache latch是采用这个机制。
如果将隐含参数_latch_wait_posting设置为2,则所有Latch都采用这种等待方式,使用这种方式能够比较精确的唤醒某个等待的进程,但维护Latch Wait List需要系统资源,并且对Latch Wait List上Latch的竞争也可能出现瓶颈。
如果一个进程请求,旋转,休眠Latch用了很长时间,他会通知PMON进程,查看Latch的占用进程是否已经意外终止或死亡,如果是则PMON会清除释放占用的Latch资源。
总之, Latch获取的流程:请求-SPIN-休眠-请求-SPIN-休眠 ... ... 占用。
1.4 Latch 和 Lock
从某种意义上说,Latch是内存中的资源锁,数据库对象(表,索引等)的锁叫Lock。
Latch和Lock的区别:
(1). Latch是对内存数据结构提供互斥访问的一种机制,而Lock是以不同的模式来套取共享资源对象,各个模式间存在着兼容或排斥,从这点看出,Latch 的访问,包括查询也是互斥的,任何时候,只能有一个进程能pin住内存的某一块,幸好这个过程是相当的短暂,否则系统性能将没的保障,从9I开始,允许多个进程同时查询相同的内存块。
(2). Latch只作用于内存中,他只能被当前实例访问,而Lock作用于数据库对象,在RAC体系中实例间允许Lock检测与访问
(3). Latch是瞬间的占用,释放,Lock的释放需要等到事务正确的结束,他占用的时间长短由事务大小决定
(4). Latch是非入队的,而Lock是入队的
(5). Latch不存在死锁,而Lock中存在。
关于lock 锁可以参考我的blog:
oracle 锁机制
http://blog.csdn.net/tianlesoftware/archive/2009/10/20/4696896.aspx
oracle 锁问题的解决
http://blog.csdn.net/tianlesoftware/archive/2009/10/28/4733630.aspx
二. Latch 争用
如果发现系统中经常由于Lock 导致用户等待,这时需要考虑系统在逻辑设计上是否有问题,比如多用户对主键的删除或者修改,是否有用户使用select… for update这样的语法,外键是否创建索引的因素。 这些因素是需要结合系统的业务逻辑性来进行数据库对象设计的。
如果发现系统慢是因为很多的Latch争用,就要考虑系统及数据库自身设计上是否存在问题,比如是否使用绑定变量,是否存在热快,数据存储参数设计是否合理等因素。
导致Latch争用而等待的原因非常多,内存中很多资源都可能存在争用。 最常见的两类latch争用如下:
(1)共享池中的Latch争用。
(2)数据缓冲池中的latch争用。
Oracle 内存 架构 详解
http://blog.csdn.net/tianlesoftware/archive/2010/05/16/5594080.aspx
2.1 共享池中的Latch争用
共享池中如果存在大量的SQL被反复分析,就会造成很大的Latch争用和长时间的等待,最常见的现象就是没有绑定变量。
最常见的集中共享池里的Latch是 library cache。 可以通过一下SQL 来查询:
SQL> select * from v$latchname where name like 'library cache%';
LATCH# NAME HASH
---------- -------------------------------------------------- ----------
217 library cache 3055961779
218 library cache lock 916468430
219 library cache pin 2802704141
220 library cache pin allocation 4107073322
221 library cache lock allocation 3971284477
222 library cache load lock 2952162927
223 library cache hash chains 1130479025
在分析系统性能时,如果看到有library cache 这样的Latch争用,就可以断定是共享池中出现了问题,这种问题基本是由SQL语句导致的,比如没有绑定变量或者一些存储过程被反复分析。
资源的争用可以通过如下SQL 来查看:
SQL> select event,count(*) from v$session_wait group by event;
EVENT COUNT(*)
---------------------------------------------------------------- ----------
SQL*Ne tmessage from client 4
Streams AQ: waiting for messages in the queue 1
ASM background timer 1
gcs remote message 1
ges remote message 1
jobq slave wait 1
rdbms ipc message 14
smon timer 1
pmon timer 1
Streams AQ: qmn slave idle wait 1
class slave wait 1
SQL*Net message to client 1
Streams AQ: waiting for time management or cleanup tasks 1
Streams AQ: qmn coordinator idle wait 1
DIAG idle wait 1
15 rows selected.
2.2 数据缓冲池Latch争用
访问频率非常高的数据块被称为热快(Hot Block),当很多用户一起去访问某几个数据块时,就会导致一些Latch争用,最常见的latch争用有:
(1) buffer busy waits
(2) cache buffer chain
这两个Latch的争用分别发生在访问数据块的不同时刻。
关于等待事件的说明,具体参考:
Oracle 常见的33个等待事件
http://blog.csdn.net/tianlesoftware/archive/2010/08/12/5807800.aspx
Cache buffer chian产生原因:
当一个会话需要去访问一个内存块时,它首先要去一个像链表一样的结构中去搜索这个数据块是否在内存中,当会话访问这个链表的时候需要获得一个Latch,如果获取失败,将会产生Latch cache buffer chain 等待,导致这个等待的原因是访问相同的数据块的会话太多或者这个列表太长(如果读到内存中的数据太多,需要管理数据块的hash列表就会很长,这样会话扫描列表的时间就会增加,持有chache buffer chain latch的时间就会变长,其他会话获得这个Latch的机会就会降低,等待就会增加)。
Buffer busy waits 产生原因:
当一个会话需要访问一个数据块,而这个数据块正在被另一个用户从磁盘读取到内存中或者这个数据块正在被另一个会话修改时,当前的会话就需要等待,就会产生一个buffer busy waits等待。
产生这些Latch争用的直接原因是太多的会话去访问相同的数据块导致热快问题,造成热快的原因可能是数据库设置导致或者重复执行的SQL 频繁访问一些相同的数据块导致。
Latch是简单的、低层次的序列化技术,用以保护SGA中的共享数据结构,比如并发用户列表和buffer cache里的blocks信息。一个服务器进程或后台进程在开始操作或寻找一个共享数据结构之前必须获得对应的latch,在完成以后释放latch。不必对latch本身进行优化,如果latch存在竞争,表明SGA的一部分正在经历不正常的资源使用。
有关这部分的更多内容,参考:
锁 死锁 阻塞 Latch 等待 详解
http://blog.csdn.net/tianlesoftware/archive/2010/08/20/5822674.aspx
三. 检查Latch 的相关SQL
3.1 查看造成LATCH BUFFER CACHE CHAINS等待事件的热快
SELECT DISTINCT a.owner, a.segment_name
FROM dba_extents a,
(SELECT dbarfil, dbablk
FROM x$bh
WHERE hladdr IN (SELECT addr
FROM ( SELECT addr
FROM v$latch_children
ORDER BY sleeps DESC)
WHERE ROWNUM < 20)) b
WHERE a.RELATIVE_FNO = b.dbarfil
AND a.BLOCK_ID <= b.dbablk
AND a.block_id + a.blocks > b.dbablk;
3.2 查询当前数据库最繁忙的Buffer,TCH(Touch)表示访问次数越高,热点快竞争问题就存在
SELECT *
FROM ( SELECT addr,
ts#,
file#,
dbarfil,
dbablk,
tch
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11;
3.3 查询当前数据库最繁忙的Buffer,结合dba_extents查询得到这些热点Buffer来自哪些对象
SELECT e.owner, e.segment_name, e.segment_type
FROM dba_extents e,
(SELECT *
FROM (SELECT addr, ts#, file#, dbarfil, dbablk, tch
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) b
WHERE e.relative_fno = b.dbarfil
AND e.block_id <= b.dbablk
AND e.block_id + e.blocks > b.dbablk;
3.4 如果在Top 5中发现latch free热点块事件时,可以从V$latch_children中查询具体的子Latch信息
FROM (SELECT addr, child#, gets, misses, sleeps, immediate_gets igets,
immediate_misses imiss, spin_gets sgets
FROM v$latch_children
WHERE NAME = 'cache buffers chains'
ORDER BY sleeps DESC)
WHERE ROWNUM < 11;
3.5 获取当前持有最热点数据块的Latch和buffer信息
SELECT b.addr, a.ts#, a.dbarfil, a.dbablk, a.tch, b.gets, b.misses, b.sleeps
FROM (SELECT *
FROM (SELECT addr, ts#, file#, dbarfil, dbablk, tch, hladdr
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) a,
(SELECT addr, gets, misses, sleeps
FROM v$latch_children
WHERE NAME = 'cache buffers chains') b
WHERE a.hladdr = b.addr;
3.6 利用前面的SQL可以找到这些热点Buffer的对象信息
SELECT distinct e.owner, e.segment_name, e.segment_type
FROM dba_extents e,
(SELECT *
FROM (SELECT addr, ts#, file#, dbarfil, dbablk, tch
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) b
WHERE e.relative_fno = b.dbarfil
AND e.block_id <= b.dbablk
AND e.block_id + e.blocks > b.dbablk;
3.7 结合SQL视图可以找到操作这些对象的相关SQL,然后通过优化SQL减少数据的访问,或者优化某些容易引起争用的操作(如connect by等操作)来减少热点块竞争
SELECT /*+ rule */ hash_value,sql_text
FROM v$sqltext
WHERE (hash_value, address) IN (
SELECT a.hash_value, a.address
FROM v$sqltext a,
(SELECT DISTINCT a.owner, a.segment_name, a.segment_type
FROM dba_extents a,
(SELECT dbarfil, dbablk
FROM (SELECT dbarfil, dbablk
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) b
WHERE a.relative_fno = b.dbarfil
AND a.block_id <= b.dbablk
AND a.block_id + a.blocks > b.dbablk) b
WHERE a.sql_text LIKE '%' || b.segment_name || '%'
AND b.segment_type = 'TABLE')
ORDER BY hash_value, address, piece;
文章来自:http://blog.csdn.net/tianlesoftware/article/details/5263238
相关推荐
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
STM32F103C8T6 USB寄存器开发详解(12)-键盘设备
科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量
Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用
基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务
1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;
altermanager的企业微信告警服务
MyAgent测试版本在线下载
Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用
C++学生成绩管理系统源码
基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略
scratch介绍(scratch说明).zip
内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。
这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。
主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日
运行GUI版本,可二开