- 浏览: 171959 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
GreatExpectations:
666可以可以哦
js并行加载,顺序执行 -
yiway:
如果是跨域的话,window.parent是拒绝访问的(由于w ...
利用HTML5的window.postMessage实现跨域通信 -
yiway:
如果是跨域的话,window.parent是决绝访问的(由于w ...
利用HTML5的window.postMessage实现跨域通信
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytpo8
ReentrantLock和内部锁的性能对比
ReentrantLock是jdk5引入的新的锁机制,它与内部锁(synchronize) 相同的并发性和内存语义,比如可重入加锁语义。在中等或者更高负荷下,ReentrantLock有更好的性能,并且拥有可轮询和可定时的请求锁等高级功能。这个程序简单对比了ReentrantLock公平锁、ReentrantLock非公平锁以及内部锁的性能,从结果上看,非公平的ReentrantLock表现最好。内部锁也仅仅是实现统计意义上的公平,结果也比公平的ReentrantLock好上很多。这个程序仅仅是计数,启动N个线程,对同一个Counter进行递增,显然,这个递增操作需要同步以保证原子性,采用不同的锁来实现同步,然后查看结果。
Counter接口:
package net.rubyeye.concurrency.chapter13;
public interface Counter {
public long getValue();
public void increment();
}
然后,首先使用我们熟悉的synchronize来实现同步:
package net.rubyeye.concurrency.chapter13;
public class SynchronizeBenchmark implements Counter {
private long count = 0;
public long getValue() {
return count;
}
public synchronized void increment() {
count++;
}
}
采用ReentrantLock的版本,切记要在finally中释放锁,这是与synchronize使用方式最大的不同,内部锁jvm会自动帮你释放锁,而ReentrantLock需要你自己来处理。
package net.rubyeye.concurrency.chapter13;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ReentrantLockBeanchmark implements Counter {
private volatile long count = 0;
private Lock lock;
public ReentrantLockBeanchmark() {
// 使用非公平锁,true就是公平锁
lock = new ReentrantLock(false);
}
public long getValue() {
// TODO Auto-generated method stub
return count;
}
public void increment() {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
}
写一个测试程序,使用CyclicBarrier来等待所有任务线程创建完毕以及所有任务线程计算完成,清单如下:
package net.rubyeye.concurrency.chapter13;
import java.util.concurrent.CyclicBarrier;
public class BenchmarkTest {
private Counter counter;
private CyclicBarrier barrier;
private int threadNum;
public BenchmarkTest(Counter counter, int threadNum) {
this.counter = counter;
barrier = new CyclicBarrier(threadNum + 1); //关卡计数=线程数+1
this.threadNum = threadNum;
}
public static void main(String args[]) {
new BenchmarkTest(new SynchronizeBenchmark(), 5000).test();
//new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();
//new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();
}
public void test() {
try {
for (int i = 0; i < threadNum; i++) {
new TestThread(counter).start();
}
long start = System.currentTimeMillis();
barrier.await(); // 等待所有任务线程创建
barrier.await(); // 等待所有任务计算完成
long end = System.currentTimeMillis();
System.out.println("count value:" + counter.getValue());
System.out.println("花费时间:" + (end - start) + "毫秒");
} catch (Exception e) {
throw new RuntimeException(e);
}
}
class TestThread extends Thread {
private Counter counter;
public TestThread(final Counter counter) {
this.counter = counter;
}
public void run() {
try {
barrier.await();
for (int i = 0; i < 100; i++)
counter.increment();
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
}
分别测试一下,
将启动的线程数限定为500,结果为:
公平ReentrantLock: 210 毫秒
非公平ReentrantLock : 39 毫秒
内部锁: 39 毫秒
将启动的线程数限定为1000,结果为:
公平ReentrantLock: 640 毫秒
非公平ReentrantLock : 81 毫秒
内部锁: 60 毫秒
线程数不变,test方法中的循环增加到1000次,结果为:
公平ReentrantLock: 16715 毫秒
非公平ReentrantLock : 168 毫秒
内部锁: 639 毫秒
将启动的线程数增加到2000,结果为:
公平ReentrantLock: 1100 毫秒
非公平ReentrantLock: 125 毫秒
内部锁: 130 毫秒
将启动的线程数增加到3000,结果为:
公平ReentrantLock: 2461 毫秒
非公平ReentrantLock: 254 毫秒
内部锁: 307 毫秒
启动5000个线程,结果如下:
公平ReentrantLock: 6154 毫秒
非公平ReentrantLock: 623 毫秒
内部锁: 720 毫秒
非公平ReentrantLock和内部锁的差距,在jdk6上应该缩小了,据说jdk6的内部锁机制进行了调整。
ReentrantLock和内部锁的性能对比
ReentrantLock是jdk5引入的新的锁机制,它与内部锁(synchronize) 相同的并发性和内存语义,比如可重入加锁语义。在中等或者更高负荷下,ReentrantLock有更好的性能,并且拥有可轮询和可定时的请求锁等高级功能。这个程序简单对比了ReentrantLock公平锁、ReentrantLock非公平锁以及内部锁的性能,从结果上看,非公平的ReentrantLock表现最好。内部锁也仅仅是实现统计意义上的公平,结果也比公平的ReentrantLock好上很多。这个程序仅仅是计数,启动N个线程,对同一个Counter进行递增,显然,这个递增操作需要同步以保证原子性,采用不同的锁来实现同步,然后查看结果。
Counter接口:
package net.rubyeye.concurrency.chapter13;
public interface Counter {
public long getValue();
public void increment();
}
然后,首先使用我们熟悉的synchronize来实现同步:
package net.rubyeye.concurrency.chapter13;
public class SynchronizeBenchmark implements Counter {
private long count = 0;
public long getValue() {
return count;
}
public synchronized void increment() {
count++;
}
}
采用ReentrantLock的版本,切记要在finally中释放锁,这是与synchronize使用方式最大的不同,内部锁jvm会自动帮你释放锁,而ReentrantLock需要你自己来处理。
package net.rubyeye.concurrency.chapter13;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ReentrantLockBeanchmark implements Counter {
private volatile long count = 0;
private Lock lock;
public ReentrantLockBeanchmark() {
// 使用非公平锁,true就是公平锁
lock = new ReentrantLock(false);
}
public long getValue() {
// TODO Auto-generated method stub
return count;
}
public void increment() {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
}
写一个测试程序,使用CyclicBarrier来等待所有任务线程创建完毕以及所有任务线程计算完成,清单如下:
package net.rubyeye.concurrency.chapter13;
import java.util.concurrent.CyclicBarrier;
public class BenchmarkTest {
private Counter counter;
private CyclicBarrier barrier;
private int threadNum;
public BenchmarkTest(Counter counter, int threadNum) {
this.counter = counter;
barrier = new CyclicBarrier(threadNum + 1); //关卡计数=线程数+1
this.threadNum = threadNum;
}
public static void main(String args[]) {
new BenchmarkTest(new SynchronizeBenchmark(), 5000).test();
//new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();
//new BenchmarkTest(new ReentrantLockBeanchmark(), 5000).test();
}
public void test() {
try {
for (int i = 0; i < threadNum; i++) {
new TestThread(counter).start();
}
long start = System.currentTimeMillis();
barrier.await(); // 等待所有任务线程创建
barrier.await(); // 等待所有任务计算完成
long end = System.currentTimeMillis();
System.out.println("count value:" + counter.getValue());
System.out.println("花费时间:" + (end - start) + "毫秒");
} catch (Exception e) {
throw new RuntimeException(e);
}
}
class TestThread extends Thread {
private Counter counter;
public TestThread(final Counter counter) {
this.counter = counter;
}
public void run() {
try {
barrier.await();
for (int i = 0; i < 100; i++)
counter.increment();
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
}
分别测试一下,
将启动的线程数限定为500,结果为:
公平ReentrantLock: 210 毫秒
非公平ReentrantLock : 39 毫秒
内部锁: 39 毫秒
将启动的线程数限定为1000,结果为:
公平ReentrantLock: 640 毫秒
非公平ReentrantLock : 81 毫秒
内部锁: 60 毫秒
线程数不变,test方法中的循环增加到1000次,结果为:
公平ReentrantLock: 16715 毫秒
非公平ReentrantLock : 168 毫秒
内部锁: 639 毫秒
将启动的线程数增加到2000,结果为:
公平ReentrantLock: 1100 毫秒
非公平ReentrantLock: 125 毫秒
内部锁: 130 毫秒
将启动的线程数增加到3000,结果为:
公平ReentrantLock: 2461 毫秒
非公平ReentrantLock: 254 毫秒
内部锁: 307 毫秒
启动5000个线程,结果如下:
公平ReentrantLock: 6154 毫秒
非公平ReentrantLock: 623 毫秒
内部锁: 720 毫秒
非公平ReentrantLock和内部锁的差距,在jdk6上应该缩小了,据说jdk6的内部锁机制进行了调整。
发表评论
-
博客已转移至 http://blog.yemou.net/
2015-07-27 17:57 872我所有的博客都已经转移至 http://blog.yemo ... -
java对象 深度克隆(不实现Cloneable接口)和浅度克隆
2015-06-08 15:45 996详见: http://blog.yemou.net/art ... -
java 多线程Callable和Runable执行顺序问题详解
2015-02-28 16:25 1090详见: http://blog.yemou.net/art ... -
java 读写锁详解
2015-02-26 17:46 976详见: http://blog.yemou.net/art ... -
jvm 常用内存分析命令
2015-02-06 15:32 723详见: http://blog.yemou.net/art ... -
Spring AOP 详解
2015-01-15 15:03 766详见: http://blog.yemou.net/art ... -
正确理解ThreadLocal
2014-06-17 16:54 671详见: http://blog.yemou.n ... -
探秘Java虚拟机——内存管理与垃圾回收
2014-06-16 23:29 1183详见: http://blog.yemou. ... -
Java GC 日志详解
2014-06-16 23:11 776详见: http://blog.yemou.net/art ... -
垃圾回收调优及JVM参数详解
2014-06-13 09:09 645http://hi.baidu.com/jiangyangw3 ... -
深入理解Java HashMap实现原理
2014-04-10 18:05 737详见: http://blog.yemou.net/art ... -
【转】Java HashMap的死循环问题
2014-04-10 17:12 908详见: http://blog.yemou.net/art ... -
HashMap和ConcurrentHashMap对null的不同处理
2014-04-10 15:45 835详见: http://blog.yemou.net/art ... -
探索 ConcurrentHashMap 高并发性的实现机制
2014-03-31 17:54 840很不错的一篇文章,值得一看 http://www.ibm ... -
并发队列ConcurrentLinkedQueue和阻塞队列LinkedBlockingQueue用法
2014-03-25 22:28 725并发队列ConcurrentLinkedQueue和阻塞队列 ... -
[转]Java中的随机数生成器:Random,ThreadLocalRandom,SecureRandom
2014-03-25 22:08 1373详见: http://blog.yemou ... -
[转]Java7中的ForkJoin并发框架初探(下)—— ForkJoin的应用
2014-03-19 15:47 575详见: http://blog.yemou.net/art ... -
[转]Java7中的ForkJoin并发框架初探(中)——JDK中实现简要分析
2014-03-19 15:46 734详见: http://blog.yemou.net/art ... -
[转]Java7中的ForkJoin并发框架初探(上)——需求背景和设计原理
2014-03-19 15:44 756详见: http://blog.yemou.n ... -
[转] Java se 7新特性研究(二)
2014-03-19 11:38 1377详见: http://blog.yemou.net/art ...
相关推荐
在Java多线程编程中,`ReentrantLock`和`synchronized`都是用于实现线程同步的重要工具,确保在并发环境中数据的一致性和正确性。两者虽然都能实现互斥访问,但在功能、性能以及使用场景上有所不同。下面我们将深入...
### ReentrantLock 与 synchronized 的比较 #### 一、引言 在Java中,多线程和并发控制一直是程序员关注的重点。随着Java的发展,其语言本身及标准库提供了丰富的工具来帮助开发者处理并发问题。其中,`...
2. **性能对比**: - 在Java 5.0初期,`ReentrantLock`的性能优于`synchronized`,尤其是处理大量线程时。然而,从Java 6开始,内置锁通过优化算法提升了性能,两者在性能上的差距变得不明显。因此,性能不应成为...
Lock、Synchronized 和 ReentrantLock 的使用 Lock、Synchronized 和 ReentrantLock 是 Java 中三种常用的同步机制,每种机制都有其特点和使用场景。下面对这三种机制进行详细的分析和比较。 一、Synchronized ...
Java中的`synchronized`关键字是多线程编程中的一个重要概念,用于控制并发访问共享资源,以保证数据的一致性和完整性。这个关键词提供了互斥锁机制,防止多个线程同时执行同一段代码,确保了线程安全。 一、`...
**ReentrantLock与synchronized的对比** 1. **控制粒度**:synchronized是隐式的,而ReentrantLock是显式的,提供了更多的控制选项。 2. **中断支持**:ReentrantLock支持可中断的获取锁,而synchronized不支持。 3....
- **ReentrantLock**:是Java并发包`java.util.concurrent.locks`中的可重入锁,提供了比`synchronized`更细粒度的控制,支持公平锁和非公平锁,以及可中断和可定时的获取锁。 7. **TestSynchronized 示例** 通常...
本文档总结了并发编程中的70道面试题及答案,涵盖了线程、synchronized、volatile、CAS、Lock、ReentrantLock等关键概念,旨在帮助开发者更好地理解并发编程的基本概念和机理。 线程间通信: * wait/notify机制:...
六、synchronized与volatile比较 `synchronized`提供的是互斥锁,确保同一时间只有一个线程执行,而`volatile`关键字则保证了变量的可见性和有序性,但不保证原子性。对于简单读写操作,`volatile`可能更高效,但...
ReentrantLock与synchronized的比较: * ReentrantLock提供了更加灵活的加锁机制,包括定时的锁等待、可中断的锁等待、公平锁、非阻塞结构的加锁等。 * ReentrantLock能够提供更好的性能和活跃性,特别是在高并发...
- **性能对比**:比较`ReentrantLock`与`synchronized`关键字在特定场景下的性能差异。 ### 结论 AQS和`ReentrantLock`是Java并发编程中重要的组成部分,通过对它们的理解和掌握,可以更好地设计和实现高性能的...
#### 四、性能对比 - **synchronized**通常比Lock接口开销更小,因为它是由JVM内置支持的,经过高度优化。 - 然而,在高度竞争的并发场景下,Lock接口可能会表现出更好的性能,尤其是在利用其额外的功能特性时。 #...
了解ReentrantLock的实现原理,有助于我们在并发编程中更好地选择和使用锁,以提高程序的并发性能和可维护性。无论是synchronized还是ReentrantLock,正确理解和使用锁是并发编程的基础,也是避免线程安全问题的...
ReentrantLock与synchronized的比较: * ReentrantLock提供了synchronized类似的功能和内存语义,但功能性方面更全面,例如时间锁等候、可中断锁等候、锁投票等。 * ReentrantLock的性能比synchronized会好点。 * ...
- Java 5引入了`java.util.concurrent`包,提供了`ReentrantLock`、`Semaphore`、`CountDownLatch`等工具类,它们提供了比`synchronized`更灵活的控制和更高的性能。 10. **最佳实践** - 在不必要的情况下避免...
而`ConcurrentHashMap`的源码则更为复杂,需要处理线程安全问题,例如使用了CAS(Compare and Swap)无锁算法,以及`Synchronized`和`ReentrantLock`等同步机制。 在选择使用`HashMap`还是`ConcurrentHashMap`时,...
3. ReentrantLock与synchronized的对比,以及如何选择合适的锁策略。 4. 并发容器的线程安全实现及性能优化技巧。 5. 原子变量的无锁编程实践和效率分析。 6. 同步工具类在多线程协调中的应用案例。 7. Future和...
4种常用Java线程锁的特点,性能比较、使用场景 线程(thread)是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发...
此外,JVM的即时编译器(JIT)可能在不同条件下对 `synchronized` 和 `ReentrantLock` 进行不同的优化,这会影响比较的结果。 另一个问题是,微基准通常是在孤立的环境中运行,不考虑真实世界的负载和并发条件。在 ...