第六章:小朱笔记hadoop之源码分析-ipc分析
第二节:Client类分析
Client端的底层通信直接采用了阻塞式IO编程:
/** * A client for an IPC service. IPC calls take a single {@link Writable} as a * parameter, and return a {@link Writable} as their value. A service runs on a * port and is defined by a parameter class and a value class. * Client端的底层通信直接采用了阻塞式IO编程 * * @see Server */ public class Client { public static final Log LOG = LogFactory.getLog(Client.class); // // 客户端维护到服务端的一组连接 private Hashtable<ConnectionId, Connection> connections = new Hashtable<ConnectionId, Connection>(); private Class<? extends Writable> valueClass; // class of call values private int counter; // counter for call ids // 客户端进程是否在运行 private AtomicBoolean running = new AtomicBoolean(true); // if client runs final private Configuration conf; // // Socket工厂,用来创建Socket连接 private SocketFactory socketFactory; // how to create sockets private int refCount = 1; // // 通过配置文件读取ping间隔 final private static String PING_INTERVAL_NAME = "ipc.ping.interval"; // 默认ping间隔为1分钟 final static int DEFAULT_PING_INTERVAL = 60000; // 1 min final static int PING_CALL_ID = -1; ....... }
(1)client运行的流程;
(a)创建代理对象;
(b)代理对象调用相应方法(invoke());
(c)invoke调用client对象的call方法,向服务器发送请求(参数、方法);
(d)再等待call方法的完成;
(c)返回请求结果;
(2)client主要的内部类
(a) Call,表示一次rpc的调用请求
(b)Connection,表示一个client与server之间的连接,一个连接一个线程启动。该类是一个连接管理内部线程类,该内部类是一个连接线程,继承自Thread类。它读取每一个Call调用实例执行后从服务端返回的响应信息,并通知其他调用实例.每一个连接具有一个连接到远程主机的Socket,该Socket能够实现多路复用,使得多个调用复用该Socket,客户端收到的调用得到的响应可能是无序的
(c)ConnectionId:连接的标记(包括server地址,协议,其他一些连接的配置项信息)
(d)ParallelCall:实现并行调用的请求
(e)ParallelResults:并行调用的执行结果
(3)client一次完整请求调用过程
demo示例:
/** * * Description: RPCserver test<br> * * Copyright: Copyright (c) 2013 <br> * Company: www.renren.com * * @author zhuhui{hui.zhu@renren-inc.com} 2013-5-17 * @version 1.0 */ public class RPCserver { /** * @param args */ public static void main(String[] args) { Server server; try { server = RPC.getServer(new HelloProtocalImp(), "127.0.0.1", 9813, 6, true, new Configuration()); server.start(); try { server.join(); } catch (InterruptedException e) { e.printStackTrace(); } } catch (IOException e) { e.printStackTrace(); } } }
第一步: 创建代理对象
(1)getproxy()方法
VersionedProtocol proxy =(VersionedProtocol) Proxy.newProxyInstance(protocol.getClassLoader(), new Class[] { protocol },new Invoker(protocol, addr, ticket, conf, factory, rpcTimeout));
(2)Invoker(protocol, addr, ticket, conf, factory, rpcTimeout)方法
Invoker是一个实现了InvocationHandler 接口的类
this.remoteId = Client.ConnectionId.getConnectionId(address, protocol,ticket, rpcTimeout, conf);
this.client = CLIENTS.getClient(conf, factory); CLIENTS是客户端与服务端链接缓存
第二步:调用业务方法
private static class Invoker implements InvocationHandler { private Client.ConnectionId remoteId; private Client client; private boolean isClosed = false; public Invoker(Class<? extends VersionedProtocol> protocol, InetSocketAddress address, UserGroupInformation ticket, Configuration conf, SocketFactory factory, int rpcTimeout) throws IOException { this.remoteId = Client.ConnectionId.getConnectionId(address, protocol, ticket, rpcTimeout, conf); this.client = CLIENTS.getClient(conf, factory); } public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { final boolean logDebug = LOG.isDebugEnabled(); long startTime = 0; if (logDebug) { startTime = System.currentTimeMillis(); } // 构造一个RPC.Invocation实例作为参数传递给调用程序,执行调用,返回值为value ObjectWritable value = (ObjectWritable) client.call(new Invocation(method, args), remoteId); if (logDebug) { long callTime = System.currentTimeMillis() - startTime; LOG.debug("Call: " + method.getName() + " " + callTime); } return value.get(); } /* close the IPC client that's responsible for this invoker's RPCs */ synchronized private void close() { if (!isClosed) { isClosed = true; CLIENTS.stopClient(client); } }
Invocation 用于封装方法名和参数,作为数据传输层。远程调用的主要关键就是Invocation实现了Writable接口,Invocation在 write(DataOutput out)函数中将调用的methodName写入到out,将调用方法的参数个数写入out ,同时逐个将参数的className写入out,最后将所有参数逐个写入out,这也就决定了通过RPC实现调用的方法中的参数要么是简单类型,要么是 String,要么是实现了Writable接口的类(参数自己知道如何序列化到stream),要么是数组(数组的元素也必须为简单类 型,String,实现了Writable接口的类)。
第三步:client对象的call方法,向服务器发送请求(参数、方法);
客户端Client类提供的最基本的功能就是执行RPC调用,其中,提供了两种调用方式,一种就是串行单个调用,另一种就是并行调用。
这里只分析串行单个调用的实现方法call,如下所示:
/** * Make a call, passing <code>param</code>, to the IPC server defined by * <code>remoteId</code>, returning the value. Throws exceptions if there * are network problems or if the remote code threw an exception. */ public Writable call(Writable param, ConnectionId remoteId) throws InterruptedException, IOException { // // 使用请求参数值构造一个Call实例 Call call = new Call(param); // // 从连接池connections中获取到一个连接(或可能创建一个新的连接) Connection connection = getConnection(remoteId, call); connection.sendParam(call); // send the parameter // 向IPC服务器发送参数 boolean interrupted = false; synchronized (call) { while (!call.done) { try { call.wait(); // wait for the result // 等待IPC服务器响应 // 等待结果的返回,在Call类的callComplete()方法里有notify()方法用于唤醒线程 } catch (InterruptedException ie) { // save the fact that we were interrupted interrupted = true; } } if (interrupted) { // set the interrupt flag now that we are done waiting Thread.currentThread().interrupt(); } if (call.error != null) { if (call.error instanceof RemoteException) { call.error.fillInStackTrace(); throw call.error; } else { // local exception // use the connection because it will reflect an ip change, // unlike // the remoteId throw wrapException(connection.getRemoteAddress(), call.error); } } else { return call.value;// 调用返回的响应值 } } }
(1)获得连接对象getConnection(remoteId, call);
private Connection getConnection(ConnectionId remoteId, Call call) throws IOException, InterruptedException { if (!running.get()) { // the client is stopped throw new IOException("The client is stopped"); } Connection connection; /* * we could avoid this allocation for each RPC by having a connectionsId * object and with set() method. We need to manage the refs for keys in * HashMap properly. For now its ok. */ do { synchronized (connections) { connection = connections.get(remoteId); if (connection == null) { connection = new Connection(remoteId); connections.put(remoteId, connection); } } } while (!connection.addCall(call));// 可见 一个connection 可以有多个调用call connection.setupIOstreams();// 实际进行连接 每个connection都新起一个线程 // we don't invoke the method below inside "synchronized (connections)" // block above. The reason for that is if the server happens to be slow, // it will take longer to establish a connection and that will slow the // entire system down. return connection; }
(2)实际进行连接并启动接收线程 connection.setupIOstreams();
private synchronized void setupIOstreams() throws InterruptedException { short numRetries = 0; final short maxRetries = 15; Random rand = null; while (true) { setupConnection(); //建立连接 InputStream inStream = NetUtils.getInputStream(socket); //获得输入流 OutputStream outStream = NetUtils.getOutputStream(socket); //获得输出流 writeRpcHeader(outStream); if (useSasl) { final InputStream in2 = inStream; final OutputStream out2 = outStream; UserGroupInformation ticket = remoteId.getTicket(); if (authMethod == AuthMethod.KERBEROS) { if (ticket.getRealUser() != null) { ticket = ticket.getRealUser(); } } boolean continueSasl = false; try { continueSasl = ticket.doAs(new PrivilegedExceptionAction<Boolean>() { @Override public Boolean run() throws IOException { return setupSaslConnection(in2, out2); } }); } catch (Exception ex) { if (rand == null) { rand = new Random(); } handleSaslConnectionFailure(numRetries++, maxRetries, ex, rand, ticket); continue; } if (continueSasl) { // Sasl connect is successful. Let's set up Sasl i/o streams. inStream = saslRpcClient.getInputStream(inStream); outStream = saslRpcClient.getOutputStream(outStream); } else { // fall back to simple auth because server told us so. authMethod = AuthMethod.SIMPLE; header = new ConnectionHeader(header.getProtocol(), header.getUgi(), authMethod); useSasl = false; } } this.in = new DataInputStream(new BufferedInputStream (new PingInputStream(inStream)));//将输入流装饰成DataInputStream this.out = new DataOutputStream//将输出流装饰成DataOutputStream (new BufferedOutputStream(outStream)); writeHeader(); // update last activity time touch(); //当连接建立时,启动接受线程等待服务端传回数据,注意:Connection继承了Tread // start the receiver thread after the socket connection has been set up start(); return; } } catch (Throwable t) { if (t instanceof IOException) { markClosed((IOException)t); } else { markClosed(new IOException("Couldn't set up IO streams", t)); } close(); } } //注意:setupConnection(); //建立连接 // start(); Connection继承了Tread 启动接受线程等待服务端传回数据 public void run() { while (waitForWork()) {//wait here for work - read or close connection //等待某个连接实例空闲,如果存在则唤醒它执行一些任务 receiveResponse(); } close(); }
(3)最终建立链接 setupConnection()
private synchronized void setupConnection() throws IOException { short ioFailures = 0; short timeoutFailures = 0; while (true) { try { this.socket = socketFactory.createSocket(); this.socket.setTcpNoDelay(tcpNoDelay); /* * Bind the socket to the host specified in the principal * name of the client, to ensure Server matching address of * the client connection to host name in principal passed. */ if (UserGroupInformation.isSecurityEnabled()) { KerberosInfo krbInfo = remoteId.getProtocol().getAnnotation(KerberosInfo.class); if (krbInfo != null && krbInfo.clientPrincipal() != null) { String host = SecurityUtil.getHostFromPrincipal(remoteId.getTicket().getUserName()); // If host name is a valid local address then bind // socket to it InetAddress localAddr = NetUtils.getLocalInetAddress(host); if (localAddr != null) { this.socket.bind(new InetSocketAddress(localAddr, 0)); } } } // 设置连接超时为20s // connection time out is 20s NetUtils.connect(this.socket, server, 20000); if (rpcTimeout > 0) { pingInterval = rpcTimeout; // rpcTimeout overwrites // pingInterval } this.socket.setSoTimeout(pingInterval); return; } catch (SocketTimeoutException toe) { /* * Check for an address change and update the local * reference. Reset the failure counter if the address was * changed */ /* * 设置最多连接重试为45次。 总共有20s*45 = 15 分钟的重试时间。 */ if (updateAddress()) { timeoutFailures = ioFailures = 0; } /* * The max number of retries is 45, which amounts to 20s*45 * = 15 minutes retries. */ handleConnectionFailure(timeoutFailures++, 45, toe); } catch (IOException ie) { if (updateAddress()) { timeoutFailures = ioFailures = 0; } handleConnectionFailure(ioFailures++, maxRetries, ie); } } }
(4)发送调用参数
public void sendParam(Call call) { if (shouldCloseConnection.get()) { return; } DataOutputBuffer d = null; try { synchronized (this.out) { if (LOG.isDebugEnabled()) LOG.debug(getName() + " sending #" + call.id); // for serializing the // data to be written d = new DataOutputBuffer(); d.writeInt(call.id); call.param.write(d); byte[] data = d.getData(); int dataLength = d.getLength(); out.writeInt(dataLength); // 首先写出数据的长度 out.write(data, 0, dataLength); // 向服务端写数据 out.flush(); } } catch (IOException e) { markClosed(e); } finally { // the buffer is just an in-memory buffer, but it is still // polite to // close early IOUtils.closeStream(d); } }
第四步 receiveResponse接收服务器返回数据
/* * Receive a response. Because only one receiver, so no synchronization * on in. * 接收到响应(因为每次从DataInputStream in中读取响应信息只有一个,无需同步) */ private void receiveResponse() { if (shouldCloseConnection.get()) { return; } touch(); try { int id = in.readInt(); // try to read an id // 阻塞读取id if (LOG.isDebugEnabled()) LOG.debug(getName() + " got value #" + id); Call call = calls.get(id); // 在calls池中找到发送时的那个对象 int state = in.readInt(); // read call status // 阻塞读取call对象的状态 if (state == Status.SUCCESS.state) { Writable value = ReflectionUtils.newInstance(valueClass, conf); value.readFields(in); // read value // 读取数据 // 将读取到的值赋给call对象,同时唤醒Client等待线程 call.setValue(value); calls.remove(id); } else if (state == Status.ERROR.state) { call.setException(new RemoteException(WritableUtils.readString(in), WritableUtils.readString(in))); calls.remove(id); } else if (state == Status.FATAL.state) { // Close the connection markClosed(new RemoteException(WritableUtils.readString(in), WritableUtils.readString(in))); } } catch (IOException e) { markClosed(e); } }
Hadoop的RPC对外的接口其实是同步的,但是,RPC的内部实现其实是异步消息机制。hadoop用线程wait/notify机制 实现异步转同步,发送请求(call)之后wait请求处理完毕,接收完响应(connection.receiveResponse())之后 notify,notify()方法在call.setValue中。但现在有一个问题,一个connection有多个call。可能同时有多个 call在等待接收消息,那么是当client接收到response后,怎样确认它到底是之前哪个request的response呢?这个就是依靠的 connection中的一个HashTable<Integer, Call>了,其中的Integer是用来标识Call,这样就可以将request和response对应上了。
时序图:
相关推荐
Spring Boot是Spring框架的一个模块,它简化了基于Spring应用程序的创建和部署过程。Spring Boot提供了快速启动Spring应用程序的能力,通过自动配置、微服务支持和独立运行的特性,使得开发者能够专注于业务逻辑,而不是配置细节。Spring Boot的核心思想是约定优于配置,它通过自动配置机制,根据项目中添加的依赖自动配置Spring应用。这大大减少了配置文件的编写,提高了开发效率。Spring Boot还支持嵌入式服务器,如Tomcat、Jetty和Undertow,使得开发者无需部署WAR文件到外部服务器即可运行Spring应用。 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司(现为Oracle公司的一部分)在1995年首次发布。Java以其“编写一次,到处运行”(WORA)的特性而闻名,这一特性得益于Java虚拟机(JVM)的使用,它允许Java程序在任何安装了相应JVM的平台上运行,而无需重新编译。Java语言设计之初就是为了跨平台,同时具备面向对象、并发、安全和健壮性等特点。 Java语言广泛应用于企业级应用、移动应用、桌面应用、游戏开发、云计算和物联网等领域。它的语法结构清晰,易于学习和使用,同时提供了丰富的API库,支持多种编程范式,包括面向对象、命令式、函数式和并发编程。Java的强类型系统和自动内存管理减少了程序错误和内存泄漏的风险。随着Java的不断更新和发展,它已经成为一个成熟的生态系统,拥有庞大的开发者社区和持续的技术创新。Java 8引入了Lambda表达式,进一步简化了并发编程和函数式编程的实现。Java 9及以后的版本继续在模块化、性能和安全性方面进行改进,确保Java语言能够适应不断变化的技术需求和市场趋势。 MySQL是一个关系型数据库管理系统(RDBMS),它基于结构化查询语言(SQL)来管理和存储数据。MySQL由瑞典MySQL AB公司开发,并于2008年被Sun Microsystems收购,随后在2010年,Oracle公司收购了Sun Microsystems,从而获得了MySQL的所有权。MySQL以其高性能、可靠性和易用性而闻名,它提供了多种特性来满足不同规模应用程序的需求。作为一个开源解决方案,MySQL拥有一个活跃的社区,不断为其发展和改进做出贡献。它的多线程功能允许同时处理多个查询,而其优化器则可以高效地执行复杂的查询操作。 随着互联网和Web应用的快速发展,MySQL已成为许多开发者和公司的首选数据库之一。它的可扩展性和灵活性使其能够处理从小规模应用到大规模企业级应用的各种需求。通过各种存储引擎,MySQL能够适应不同的数据存储和检索需求,从而为用户提供了高度的定制性和性能优化的可能性。
精选毕设项目-新浪读书
智慧农业平台解决方案
精选毕设项目-小程序地图Demo
实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对 Windows Server 2016 线程同步的理解。 1)回顾系统进程、线程的有关概念,加深对 Windows Server 2016 线程的理解; 2)了解事件和互斥体对象; 3)通过分析实验程序,了解管理事件对象的API; 4)了解在进程中如何使用事件对象; 5)了解在进程中如何使用互斥体对象; 6)了解父进程创建子进程的程序设计方法。 程序清单 清单2-1 1.// event 项目 2.#include <windows.h> 3.#include <iostream> 4.using namespace std; 5. 6.// 以下是句柄事件。实际中很可能使用共享的包含文件来进行通讯 7.static LPCTSTR g_szContinueEvent = "w2kdg.EventDemo.event.Continue"; 8. 9.// 本方法只是创建了一个进程的副本,以子进程模式 (由命令行指定) 工作 10.BOOL CreateChild() 11.{
三相VIENNA整流,维也纳整流器simulink仿真 输入电压220v有效值 输出电压800v纹波在1%以内 0.1s后系统稳定 功率因数>0.95 电流THD<5% 开关频率20k 图一为拓扑,可以看到功率因数和THD以及输出电压 图二为直流输出电压 图三四为a相电压电流 图五为控制等计算的总体框图 图六为svpwm调制框图 图七为双闭环控制图八为输出调制波 可作为电力电子方向入门学习~~
chromedriver-linux64_122.0.6251.0
一、实验目的 实验1.1 Windows“任务管理器”的进程管理 通过在Windows任务管理器中对程序进程进行响应的管理操作,熟悉操作系统进程管理的概念,学习观察操作系统运行的动态性能。 实验1.2 Windows Server 2016进程的“一生” 1)通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉 操作系统的进程概念,理解Windows Server 2016进程的“一生”; 2)通过阅读和分析实验程序,学习创建进程、观察进程和终止进程的程序设计方法。 1.// proccreate项目 2.#include <windows.h> 3.#include <iostream> 4.#include <stdio.h> 5.using namespace std; 6. 7.// 创建传递过来的进程的克隆过程并赋与其ID值 8.void StartClone(int nCloneID) { 9. // 提取用于当前可执行文件的文件名 10. TCHAR szFilename[MAX_PATH]; 11
MATLAB环境下一种基于稀疏优化的瞬态伪影消除算法 程序运行环境为MATLAB R2018A,执行一种基于稀疏优化的瞬态伪影消除算法。 GRAY = [1 1 1] * 0.7; subplot(4, 1, 4) line(n, y, 'color', GRAY, 'lineWidth', 1) line(n, y - x, 'color', 'black'); legend('Raw data', 'Corrected data') xlim([0 N]) xlabel('Time (n)') 压缩包=数据+程序+参考。
多机系统的暂态稳定仿真 MATLAB编程 针对多机电力系统,通过编程,计算当发生故障时,多台发电机的功角曲线(pv节点发电机与平衡节点发电机的功角差),通过功角曲线来分析判断多机系统的暂态稳定性。 注: 可指定故障发生位置及故障清除时间 下面以IEEE30节点系统为例
Spring Boot是Spring框架的一个模块,它简化了基于Spring应用程序的创建和部署过程。Spring Boot提供了快速启动Spring应用程序的能力,通过自动配置、微服务支持和独立运行的特性,使得开发者能够专注于业务逻辑,而不是配置细节。Spring Boot的核心思想是约定优于配置,它通过自动配置机制,根据项目中添加的依赖自动配置Spring应用。这大大减少了配置文件的编写,提高了开发效率。Spring Boot还支持嵌入式服务器,如Tomcat、Jetty和Undertow,使得开发者无需部署WAR文件到外部服务器即可运行Spring应用。 Java是一种广泛使用的高级编程语言,由Sun Microsystems公司(现为Oracle公司的一部分)在1995年首次发布。Java以其“编写一次,到处运行”(WORA)的特性而闻名,这一特性得益于Java虚拟机(JVM)的使用,它允许Java程序在任何安装了相应JVM的平台上运行,而无需重新编译。Java语言设计之初就是为了跨平台,同时具备面向对象、并发、安全和健壮性等特点。 Java语言广泛应用于企业级应用、移动应用、桌面应用、游戏开发、云计算和物联网等领域。它的语法结构清晰,易于学习和使用,同时提供了丰富的API库,支持多种编程范式,包括面向对象、命令式、函数式和并发编程。Java的强类型系统和自动内存管理减少了程序错误和内存泄漏的风险。随着Java的不断更新和发展,它已经成为一个成熟的生态系统,拥有庞大的开发者社区和持续的技术创新。Java 8引入了Lambda表达式,进一步简化了并发编程和函数式编程的实现。Java 9及以后的版本继续在模块化、性能和安全性方面进行改进,确保Java语言能够适应不断变化的技术需求和市场趋势。 MySQL是一个关系型数据库管理系统(RDBMS),它基于结构化查询语言(SQL)来管理和存储数据。MySQL由瑞典MySQL AB公司开发,并于2008年被Sun Microsystems收购,随后在2010年,Oracle公司收购了Sun Microsystems,从而获得了MySQL的所有权。MySQL以其高性能、可靠性和易用性而闻名,它提供了多种特性来满足不同规模应用程序的需求。作为一个开源解决方案,MySQL拥有一个活跃的社区,不断为其发展和改进做出贡献。它的多线程功能允许同时处理多个查询,而其优化器则可以高效地执行复杂的查询操作。 随着互联网和Web应用的快速发展,MySQL已成为许多开发者和公司的首选数据库之一。它的可扩展性和灵活性使其能够处理从小规模应用到大规模企业级应用的各种需求。通过各种存储引擎,MySQL能够适应不同的数据存储和检索需求,从而为用户提供了高度的定制性和性能优化的可能性。
精选毕设项目-鱼缸表盘系统小程序
在科技与司法的交响曲中,智慧法院应运而生,成为新时代司法服务的新篇章。它不仅仅是一个概念,更是对法院传统工作模式的一次深刻变革。智慧法院通过移动信息化技术,为法院系统注入了强大的生命力,有效缓解了案多人少的矛盾,让司法服务更加高效、便捷。 立案、调解、审判,每一个阶段都融入了科技的智慧。在立案阶段,智慧法院利用区块链技术实现可信存证,确保了电子合同的合法性和安全性,让交易双方的身份真实性、交易安全性得到了有力见证。这不仅极大地缩短了立案时间,还为后续审判工作奠定了坚实的基础。在调解阶段,多元调解服务平台借助人工智能、自然语言处理等前沿技术,实现了矛盾纠纷的快速化解。无论是矛盾类型的多元化,还是化解主体的多元化,智慧法院都能提供一站式、全方位的服务,让纠纷解决更加高效、和谐。而在审判阶段,智能立案、智能送达、智能庭审、智能判决等一系列智能化手段的应用,更是让审判活动变得更加智能化、集约化。这不仅提高了审判效率,还确保了审判质量的稳步提升。 更为引人注目的是,智慧法院还构建了一套完善的执行体系。移动执行指挥云平台的建设,让执行工作变得更加精准、高效。执行指挥中心和信息管理中心的一体化应用,实现了信息的实时传输和交换,为执行工作提供了强有力的支撑。而执行指挥车的配备,更是让执行现场通讯信号得到了有力保障,应急通讯能力得到了显著提升。这一系列创新举措的实施,不仅让执行难问题得到了有效解决,还为构建诚信社会、保障金融法治化营商环境提供了有力支撑。智慧法院的出现,让司法服务更加贴近民心,让公平正义的阳光更加温暖人心。
内容概要:本文针对计算机网络这门课程的期末复习,全面介绍了多个关键点和重要概念。主要内容涵盖了计算机网络的基本概念、OSI七层模型及其每一层的具体职责和协议、详细的TCP/IP协议介绍,尤其是三次握手和四次挥手机制、IP地址(IPv4 和 IPv6)的概念和子网划分的技术、静态路由和动态路由的区别及其路由选择算法、TCP和UDP作为两种主要传输层协议的功能区别、各种常用的应用层协议如HTTP、HTTPS、FTP、SMTP等,此外还包括了一些关于网络性能优化的关键参数以及常见的网络安全措施。所有理论均配有相应的案例分析帮助深入理解和巩固知识点。 适合人群:正在准备计算机网络相关考试的学生,或希望深入理解计算机网络架构和原理的人群。 使用场景及目标:为用户提供详尽的期末复习指南,助力理解复杂的技术概念并提高解决具体应用问题的能力,同时通过实例演示使学习变得更加直观。 其他说明:强调不仅要记住公式和定义,更要关注概念背后的运作逻辑及实际应用情况来达到良好的复习效果。
精选毕设项目-移动端商城
本文介绍了基于Python的B站视频的数据分析可视化系统设计与实现。该系统帮助用户深入了解B站视频的趋势,并通过数据分析和可视化技术展示相关信息。利用Python的网络爬虫技术获取B站上的视频数据,包括视频标题、上传者、播放量、点赞数等信息。借助数据分析库Pandas对获取的数据进行处理和分析,例如计算了不同用户视频发布个数、粉丝量、视频长度、视频观阅人数,还分析了不同视频的舆情分布和流行趋势。接着,利用可视化库Echarts将分析结果呈现为图表,例如柱状图、饼图、折线图等,以便用户直观地理解数据。为了提供更加个性化的服务,系统还集成了协同过滤算法推荐功能,根据用户的历史观看记录和偏好,推荐可能感兴趣的视频。最后,设计并实现了一个交互式的用户界面,用户可以通过界面选择感兴趣的话题和日期范围,系统将动态展示相关视频的数据分析结果。通过本系统,用户可以更好地了解B站视频的特点和趋势,同时享受到个性化的视频推荐服务,为用户提供了一个便捷而全面的数据分析工具。 感兴趣自行下载学习!
标题 "MPU6050.zip" 暗示了这个压缩包可能包含了与MPU6050陀螺仪和加速度传感器相关的资源。MPU6050是一款广泛应用的惯性测量单元(IMU),它能检测设备在三个轴上的角速度和线性加速度,常用于运动控制、姿态估算、导航等领域。 描述中只提到了"MPU6050.zip",没有提供额外信息,但我们可以通过标签 "stm32cubemx" 来推测,这个压缩包里的内容可能与STM32系列微控制器以及使用STM32CubeMX配置工具有关。STM32CubeMX是一款强大的配置工具,用户可以利用它来初始化STM32微控制器的外设,生成相应的初始化代码。 在压缩包的文件名列表中,我们看到以下几个文件: 1. mpu6050.c:这是一个C源文件,通常包含了与MPU6050交互的驱动程序代码。在这个文件里,开发者可能会定义函数来初始化传感器、读取数据、处理中断等。 2. mpu6050.h:这是对应的头文件,包含了函数声明、常量定义和结构体等,供其他模块调用时包含,以实现对MPU60。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
IPSO-SVR 改进粒子群算法优化支持向量机的多变量回归预测 Matlab语言 1.多变量单输出,通过非线性权重递减方式对粒子群算法进行改进,优化SVR中的两个参数,评价指标包括R2、MAE、MSE、MAPE,效果如图所示,可完全满足您的需求~ 2.直接替Excel数据即可用,注释清晰,适合新手小白[火] 3.附赠测试数据,输入格式如图3所示,可直接运行 4.仅包含模型代码 5.模型只是提供一个衡量数据集精度的方法,因此无法保证替数据就一定得到您满意的结果~
精选项目-天气预报带后端
精选毕设项目-自助查勘