一、特征提取Feature Extraction:
· SIFT [1] [Demo program][SIFT Library] [VLFeat]
· PCA-SIFT [2] [Project]
· Affine-SIFT [3] [Project]
· SURF [4] [OpenSURF] [Matlab Wrapper]
· Affine Covariant Features [5] [Oxford project]
· MSER [6] [Oxford project] [VLFeat]
· Geometric Blur [7] [Code]
· Local Self-Similarity Descriptor [8] [Oxford implementation]
· Global and Efficient Self-Similarity [9] [Code]
· Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]
· GIST [11] [Project]
· Shape Context [12] [Project]
· Color Descriptor [13] [Project]
· Pyramids of Histograms of Oriented Gradients [Code]
· Space-Time Interest Points (STIP) [14][Project] [Code]
· Boundary Preserving Dense Local Regions [15][Project]
· Weighted Histogram[Code]
· Histogram-based Interest Points Detectors[Paper][Code]
· An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]
· Fast Sparse Representation with Prototypes[Project]
· Corner Detection [Project]
· AGAST Corner Detector: faster than FAST and even FAST-ER[Project]
· Real-time Facial Feature Detection using Conditional Regression Forests[Project]
· Global and Efficient Self-Similarity for Object Classification and Detection[code]
· WαSH: Weighted α-Shapes for Local Feature Detection[Project]
· HOG[Project]
· Online Selection of Discriminative Tracking Features[Project]
二、图像分割Image Segmentation:
· Normalized Cut [1] [Matlab code]
· Gerg Mori’ Superpixel code [2] [Matlab code]
· Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
· Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
· OWT-UCM Hierarchical Segmentation [5] [Resources]
· Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
· Quick-Shift [7] [VLFeat]
· SLIC Superpixels [8] [Project]
· Segmentation by Minimum Code Length [9] [Project]
· Biased Normalized Cut [10] [Project]
· Segmentation Tree [11-12] [Project]
· Entropy Rate Superpixel Segmentation [13] [Code]
· Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
· Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
· Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
· Random Walks for Image Segmentation[Paper][Code]
· Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
· An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
· Geodesic Star Convexity for Interactive Image Segmentation[Project]
· Contour Detection and Image Segmentation Resources[Project][Code]
· Biased Normalized Cuts[Project]
· Max-flow/min-cut[Project]
· Chan-Vese Segmentation using Level Set[Project]
· A Toolbox of Level Set Methods[Project]
· Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
· Improved C-V active contour model[Paper][Code]
· A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
· Level Set Method Research by Chunming Li[Project]
· ClassCut for Unsupervised Class Segmentation[code]
· SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]
三、目标检测Object Detection:
· A simple object detector with boosting [Project]
· INRIA Object Detection and Localization Toolkit [1] [Project]
· Discriminatively Trained Deformable Part Models [2] [Project]
· Cascade Object Detection with Deformable Part Models [3] [Project]
· Poselet [4] [Project]
· Implicit Shape Model [5] [Project]
· Viola and Jones’s Face Detection [6] [Project]
· Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
· Hand detection using multiple proposals[Project]
· Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
· Discriminatively trained deformable part models[Project]
· Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
· Image Processing On Line[Project]
· Robust Optical Flow Estimation[Project]
· Where's Waldo: Matching People in Images of Crowds[Project]
· Scalable Multi-class Object Detection[Project]
· Class-Specific Hough Forests for Object Detection[Project]
· Deformed Lattice Detection In Real-World Images[Project]
· Discriminatively trained deformable part models[Project]
四、显著性检测Saliency Detection:
· Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]
· Frequency-tuned salient region detection [2] [Project]
· Saliency detection using maximum symmetric surround [3] [Project]
· Attention via Information Maximization [4] [Matlab code]
· Context-aware saliency detection [5] [Matlab code]
· Graph-based visual saliency [6] [Matlab code]
· Saliency detection: A spectral residual approach. [7] [Matlab code]
· Segmenting salient objects from images and videos. [8] [Matlab code]
· Saliency Using Natural statistics. [9] [Matlab code]
· Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
· Learning to Predict Where Humans Look [11] [Project]
· Global Contrast based Salient Region Detection [12] [Project]
· Bayesian Saliency via Low and Mid Level Cues[Project]
· Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
· Saliency Detection: A Spectral Residual Approach[Code]
五、图像分类、聚类Image Classification, Clustering
· Pyramid Match [1] [Project]
· Spatial Pyramid Matching [2] [Code]
· Locality-constrained Linear Coding [3] [Project] [Matlab code]
· Sparse Coding [4] [Project] [Matlab code]
· Texture Classification [5] [Project]
· Multiple Kernels for Image Classification [6] [Project]
· Feature Combination [7] [Project]
· SuperParsing [Code]
· Large Scale Correlation Clustering Optimization[Matlab code]
· Detecting and Sketching the Common[Project]
· Self-Tuning Spectral Clustering[Project][Code]
· User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
· Filters for Texture Classification[Project]
· Multiple Kernel Learning for Image Classification[Project]
· SLIC Superpixels[Project]
六、抠图Image Matting
· A Closed Form Solution to Natural Image Matting [Code]
· Spectral Matting [Project]
· Learning-based Matting [Code]
七、目标跟踪Object Tracking:
· A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
· Object Tracking via Partial Least Squares Analysis[Paper][Code]
· Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
· Online Visual Tracking with Histograms and Articulating Blocks[Project]
· Incremental Learning for Robust Visual Tracking[Project]
· Real-time Compressive Tracking[Project]
· Robust Object Tracking via Sparsity-based Collaborative Model[Project]
· Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
· Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
· Superpixel Tracking[Project]
· Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
· Online Multiple Support Instance Tracking [Paper][Code]
· Visual Tracking with Online Multiple Instance Learning[Project]
· Object detection and recognition[Project]
· Compressive Sensing Resources[Project]
· Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
· Tracking-Learning-Detection[Project][OpenTLD/C++ Code]
· the HandVu:vision-based hand gesture interface[Project]
· Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]
八、Kinect:
· Kinect toolbox[Project]
· OpenNI[Project]
· zouxy09 CSDN Blog[Resource]
· FingerTracker 手指跟踪[code]
九、3D相关:
· 3D Reconstruction of a Moving Object[Paper] [Code]
· Shape From Shading Using Linear Approximation[Code]
· Combining Shape from Shading and Stereo Depth Maps[Project][Code]
· Shape from Shading: A Survey[Paper][Code]
· A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
· Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
· A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
· Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
· Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
· Learning 3-D Scene Structure from a Single Still Image[Project]
十、机器学习算法:
· Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]
· Random Sampling[code]
· Probabilistic Latent Semantic Analysis (pLSA)[Code]
· FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
· Fast Intersection / Additive Kernel SVMs[Project]
· SVM[Code]
· Ensemble learning[Project]
· Deep Learning[Net]
· Deep Learning Methods for Vision[Project]
· Neural Network for Recognition of Handwritten Digits[Project]
· Training a deep autoencoder or a classifier on MNIST digits[Project]
· THE MNIST DATABASE of handwritten digits[Project]
· Ersatz:deep neural networks in the cloud[Project]
· Deep Learning [Project]
· sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
· Weka 3: Data Mining Software in Java[Project]
· Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]
· CNN - Convolutional neural network class[Matlab Tool]
· Yann LeCun's Publications[Wedsite]
· LeNet-5, convolutional neural networks[Project]
· Training a deep autoencoder or a classifier on MNIST digits[Project]
· Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]
· Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]
· Sparse coding simulation software[Project]
· Visual Recognition and Machine Learning Summer School[Software]
十一、目标、行为识别Object, Action Recognition:
· Action Recognition by Dense Trajectories[Project][Code]
· Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
· Recognition Using Regions[Paper][Code]
· 2D Articulated Human Pose Estimation[Project]
· Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
· Estimating Human Pose from Occluded Images[Paper][Code]
· Quasi-dense wide baseline matching[Project]
· ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]
· Real Time Head Pose Estimation with Random Regression Forests[Project]
· 2D Action Recognition Serves 3D Human Pose Estimation[Project]
· A Hough Transform-Based Voting Framework for Action Recognition[Project]
· Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]
· 2D articulated human pose estimation software[Project]
· Learning and detecting shape models [code]
· Progressive Search Space Reduction for Human Pose Estimation[Project]
· Learning Non-Rigid 3D Shape from 2D Motion[Project]
十二、图像处理:
· Distance Transforms of Sampled Functions[Project]
· The Computer Vision Homepage[Project]
· Efficient appearance distances between windows[code]
· Image Exploration algorithm[code]
· Motion Magnification 运动放大 [Project]
· Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]
· A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]
十三、一些实用工具:
· EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]
· a development kit of matlab mex functions for OpenCV library[Project]
· Fast Artificial Neural Network Library[Project]
十四、人手及指尖检测与识别:
· finger-detection-and-gesture-recognition [Code]
· Hand and Finger Detection using JavaCV[Project]
· Hand and fingers detection[Code]
十五、场景解释:
· Nonparametric Scene Parsing via Label Transfer [Project]
十六、光流Optical flow:
· High accuracy optical flow using a theory for warping [Project]
· Dense Trajectories Video Description [Project]
· SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]
· KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]
· Tracking Cars Using Optical Flow[Project]
· Secrets of optical flow estimation and their principles[Project]
· implmentation of the Black and Anandan dense optical flow method[Project]
· Optical Flow Computation[Project]
· Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]
· A Database and Evaluation Methodology for Optical Flow[Project]
· optical flow relative[Project]
· Robust Optical Flow Estimation [Project]
· optical flow[Project]
十七、图像检索Image Retrieval:
· Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval [Paper][code]
十八、马尔科夫随机场Markov Random Fields:
· Markov Random Fields for Super-Resolution [Project]
· A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]
十九、运动检测Motion detection:
· Moving Object Extraction, Using Models or Analysis of Regions [Project]
· Background Subtraction: Experiments and Improvements for ViBe [Project]
· A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]
· changedetection.net: A new change detection benchmark dataset[Project]
· ViBe - a powerful technique for background detection and subtraction in video sequences[Project]
· Background Subtraction Program[Project]
· Motion Detection Algorithms[Project]
· Stuttgart Artificial Background Subtraction Dataset[Project]
· Object Detection, Motion Estimation, and Tracking[Project]
相关推荐
【标题】"大模型源代码和资料.zip" 暗示了这个压缩包包含的是关于大型人工智能模型的源代码和相关学习资源。这类模型通常指的是能够处理大规模数据、执行复杂任务的深度学习或机器学习模型,例如BERT、GPT系列或者...
根据提供的文件信息,我们可以推断出这是一些与计算机科学相关的资源链接集合,特别是与人工智能、软件开发等领域有关。下面将对这些网址所代表的知识点进行详细的解释与扩展。 ### 相关论文网址 #### 1. PUDN...
OpenCV是一个广泛使用的计算机视觉库,包含许多图像处理和机器学习功能,非常适合用于ASM算法的实现。这个库可能提供了ASM算法的接口和示例代码,帮助开发者快速集成ASM到自己的项目中。 总结来说,ASM算法是一种...
### 使用PyTorch进行深度学习开发的相关知识点 #### 一、PyTorch官方网站 - **特点**:作为PyTorch的官方入口,该网站不仅包含了详细的文档和教程,还...通过不断学习和实践,相信你会在深度学习领域取得更大的成就。
6. **机器学习与人工智能**:大数据挑战通常涉及机器学习算法,如分类、聚类、回归和深度学习等,用于挖掘数据中的模式和趋势。TensorFlow、Keras和PyTorch等是常用的深度学习框架。 7. **数据可视化**:为了便于...
图割(Graph-cuts)是一种在计算机科学领域广泛使用的图像分割和优化技术,尤其是在计算机视觉、图像处理和机器学习中。它基于网络流理论,利用最大流最小割(Max-Flow Min-Cut)算法来寻找图像的最佳分割边界。这个...
总结来说,这个notebook是一个综合性的学习资源,涵盖了深度学习、计算机视觉、机器学习和Linux操作系统等多个重要领域,特别关注了目标检测和实例分割的前沿技术,并且基于开源的理念进行分享。对于想要深入学习...
然而,随着技术的发展,验证码的破解也成为了计算机视觉和机器学习研究的热点问题。 这篇名为“破解验证码资料论文”的压缩包文件包含了关于验证码破解技术的研究,特别是涉及到图形分割和SVM(支持向量机)算法的...
因此,后续研究者提出了许多改进和扩展,如结合其他机器学习方法进行半监督学习,或者使用更复杂的能量函数来处理更多变的图像特征。 总的来说,Graph Cut是一种强大的图像分割工具,理解其原理和实现对于深入学习...
表情识别是计算机视觉和机器学习领域的一个子问题,旨在通过分析面部特征来识别个体的情绪状态。在这个项目中,我们关注的是使用深度学习模型对基本的七种表情进行分类:高兴、悲伤、惊讶、愤怒、恐惧、厌恶和中立。...
"机器学习" 这个标签明确了这个压缩包文件的主要内容是关于机器学习领域的,特别是与计算机视觉相关的应用。CVPR上的许多工作都涉及深度学习,这是一种机器学习的重要分支,常用于图像分类、目标检测、语义分割等...
总之,neural_renderer提供了一种创新的方式,使用深度学习技术来处理3D渲染问题,为研究人员和开发者在图形学和机器学习领域提供了新的工具。通过安装并熟悉这个库,你将能够探索并应用这些前沿技术,提升你的项目...
1. **分类栏目自由添加与排序**:该系统允许用户根据自己的需求自定义网址分类,如机器学习、神经网络、计算机视觉等,并可以自由调整这些分类的顺序,使得用户能够快速找到所需的信息源。 2. **在线操作功能**:...
本资源"pedestrian_ICRA"提供了VS编译通过的Real-Time Human Detection Using Contour Cues论文的源代码,为研究者和开发者提供了实现行人检测算法的实际操作平台。 论文《Real-Time Human Detection Using Contour...
这个压缩包包含了Rob Hess编写的SIFT代码,他是OpenCV库的一个贡献者,而OpenCV是一个广泛使用的开源计算机视觉和机器学习软件库。此版本兼容OpenCV 2.3.1和Microsoft Visual Studio 2010,这意味着开发者可以使用...
2. **人工智能(Artificial Intelligence)**:AI是自主机器人的核心,它涉及机器学习、深度学习、计算机视觉、自然语言处理等技术,使得机器人能理解和适应复杂环境。 3. **传感器与感知(Sensors and Perception...
【标题】"西储大学数据(官方版).rar" 提供的是美国凯斯西储大学...对于机器学习或人工智能项目,可能需要进行特征工程、模型训练和验证。最后,基于分析结果,可以得出有价值的洞察,支持决策或推动新知识的发展。
车牌图像的字符分割及识别是计算机视觉领域中的一个重要任务,主要应用于智能交通系统,如自动车辆识别、交通违章监测等。这项技术的核心在于对车辆图片中的车牌进行精确定位,然后将车牌上的每个字符进行分割,最后...
稀疏编码理论是机器学习领域的一种表示学习方法,它通过假设数据由少量的、非零的、稀疏的表示系数生成,来学习数据的内在结构和特征。稀疏编码理论在图像显着性分析中的应用,是为了从训练图像中学习到能有效表示...
在这样的活动中,与会者通常会探讨如何利用计算机视觉和机器学习算法,特别是Python编程语言,来提升低分辨率视频到更高清晰度的转换方法。在给定的“VSR_Workshop”压缩包中,我们很可能找到了相关的研究材料、代码...