`
deepfuture
  • 浏览: 4430481 次
  • 性别: Icon_minigender_1
  • 来自: 湛江
博客专栏
073ec2a9-85b7-3ebf-a3bb-c6361e6c6f64
SQLite源码剖析
浏览量:80322
1591c4b8-62f1-3d3e-9551-25c77465da96
WIN32汇编语言学习应用...
浏览量:70814
F5390db6-59dd-338f-ba18-4e93943ff06a
神奇的perl
浏览量:104001
Dac44363-8a80-3836-99aa-f7b7780fa6e2
lucene等搜索引擎解析...
浏览量:287480
Ec49a563-4109-3c69-9c83-8f6d068ba113
深入lucene3.5源码...
浏览量:15125
9b99bfc2-19c2-3346-9100-7f8879c731ce
VB.NET并行与分布式编...
浏览量:68327
B1db2af3-06b3-35bb-ac08-59ff2d1324b4
silverlight 5...
浏览量:32550
4a56b548-ab3d-35af-a984-e0781d142c23
算法下午茶系列
浏览量:46258
社区版块
存档分类
最新评论

谱聚类

阅读更多

1. 谱聚类

      给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。
      聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权重尽可能低(这意味着组间相似度要尽可能低),组内的边的权重尽可能高(这意味着组内相似度要尽可能高)。将上面的例子代入就是将每一个博客当作图上的一个顶点,然后根据相似度将这些顶点连起来,最后进行分割。分割后还连在一起的顶点就是同一类了。更具体的例子如下图所示:

在上图中,一共有6个顶点(博客),顶点之间的连线表示两个顶点的相似度,现在要将这图分成两半(两个类),要怎样分割(去掉哪边条)?根据谱聚类的思想,应该去掉的边是用虚线表示的那条。最后,剩下的两半就分别对应两个类了。
      根据这个思想,可以得到unnormalized谱聚类和normalized谱聚类,由于前者比后者简单,所以本文介绍unnormalized谱聚类的几个步骤(假设要分K个类):
(a)建立similarity graph,并用 W 表示similarity graph的带权邻接矩阵
(b)计算unnormalized graph Laplacian matrix L(L = D - W, 其中D是degree matrix)
(c)计算L的前K个最小的特征向量
(d)把这k个特征向量排列在一起组成一个N*k的矩阵,将其中每一行看作k维空间中的一个向量,并使用 K-means 算法进行聚类

 

2. 算法原理解析

     这一节主要从大体上解释unnormalized谱聚类的四个步骤是怎么来的,不涉及具体的公式推导。
(a)谱聚类的思想就是要转化为图分割问题。因此,第一步就是将原问题转化为图。转为图有两个问题要解决:一是两个顶点的边要怎样定义;二是要保留哪些边。
      对于第一个问题,如果两个点在一定程度上相似,就在两个点之间添加一条边。相似的程度由边的权重表示(上图中边上面的数值就是权重了)。因此,只要是计算相似度的公式都可用,不过常用的是Gaussian similarity function
      要保留部分边的原因有:边太多了不好处理;权重太低的边是多余的。常用的保留边的方法是建立k-nearest neighbor graph。在这种图中,每个顶点只与K个相似度最高的点连边。

 

(b)unnormalized graph Laplacian matrix(以下用L表示)有很多很好的性质,也正是这个原因,才要在第二步中计算这么一个矩阵。最重要的性质是下面这一组性质:

这一组性质将在之后的公式推导中起到决定性作用。

 

(c)将原问题转化为图后,接下来的工作就是决定怎样分割了。图分割问题实际上就是最小割问题(mincut problem)。最小割问题可定义为最小化以下目标函数:

其中k表示分成k个组,Ai表示第i个组,表示第Ai的补集,W(A,B)表示第A组与第B组之间的所有边的权重之和。
      这个式子的直观意义:如果要分成K个组,那么其代价就是进行分割时去掉的边的权重的总和。可惜的是直接最小化这式子通常会导致不好的分割。以分成2类为例,这个式子通常会将图分成这样的两类:一个点为一类,剩下的所有点为另一类。显然,这样的分割是很不好的。因为我们期望着每个类都有合理的大小。所以,要对这个式子进行改进,改进后的公式(称为RatioCut)如下:

其中|A|表示A组中包含的顶点数目。
      在RatioCut中,如果某一组包含的顶点数越少,那么它的值就越大。在一个最小化问题中,这相当于是惩罚,也就是不鼓励将组分得太小。现在只要将最小化RatioCut解出来,分割就完成了。不幸的是,这是个NP难问题。想要在多项式时间内解出来,就要对这个问题作一个转化了。在转化的过程中,就用到上面提到的L的那一组性质,经过若干推导,最后可以得到这样的一个问题:


其中H是一个矩阵,它的元素的定义(Eq.(5))如下:

      如果H矩阵的元素不为0,则说明第i个点属于第j个类。也就是说,只要得到H矩阵,就能知道要怎样分割了。可惜的是,这个问题仍然是NP难问题。但是,如果我们让H矩阵的元素能够取任意值,这个问题就变成多项式时间内可解的了,此时问题变为:


      根据Rayleigh-Ritz theorem,这个问题的解是L的前k个最小的特征向量组成的矩阵H,其中特征向量是按列来排,即H的每一列,均为一个特征向量。

 

(d)在第三步中,我们为了松驰NP难问题,让H矩阵取任意值,因此,解出来的H矩阵不再具有原来的性质——元素值能指出哪个点属于哪一类。尽管如此,对于k-means来说,将H矩阵的每一行当作一个点进行聚类还是挺轻松的。因此,用k-means对H矩阵进行聚类作为谱聚类的最终结果。

分享到:
评论

相关推荐

    多目标白鲸优化算法MOBWO:在多目标测试函数中的实证与应用分析,多目标白鲸优化算法MOBWO的实证研究:在九个测试函数中的表现与评估,多目标白鲸优化算法MOBWO 在9个多目标测试函数中测试 Mat

    多目标白鲸优化算法MOBWO:在多目标测试函数中的实证与应用分析,多目标白鲸优化算法MOBWO的实证研究:在九个测试函数中的表现与评估,多目标白鲸优化算法MOBWO 在9个多目标测试函数中测试 Matlab语言 程序已调试好,可直接运行,算法新颖 1将蛇优化算法的优良策略与多目标优化算法框架(网格法)结合形成多目标蛇优化算法(MOSO),为了验证所提的MOSO的有效性,将其在9个多目标测试函数 (ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、Kursawe、Poloni,Viennet2、Viennet3) 上实验,并采用IGD、GD、HV、SP四种评价指标进行评价,部分效果如图1所示,可完全满足您的需求~ 2源文件夹包含MOBWO所有代码(含9个多目标测试函数)以及原始白鲸优化算法文献 3代码适合新手小白学习,一键运行main文件即可轻松出图 4仅包含Matlab代码,后可保证原始程序运行~ ,多目标白鲸优化算法(MOBWO); 测试函数; Matlab语言; 程序调试; 算法新颖; 多目标蛇优化算法(MOSO); IGD、GD、HV、SP评价指标; 代码学习; 轻松出图。,基于

    【图像加密】基于matlab图像加密的混沌地图晶格系统的评估【含Matlab源码 9901期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    【图像融合】基于matlab像素的多焦点和多光谱图像融合【含Matlab源码 7572期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    中国石油微服务开发REST API接口定义规范及其安全设计

    内容概要:本文介绍了在中国石油勘探开发梦想云平台上定义REST API接口的基本规范,旨在提高接口质量,便于开发、测试和维护。主要内容包括REST API的基础概念,设计流程,URI、HTTP方法及响应状态码的运用,API文档的管理以及Swagger工具的应用,还详细阐述了API安全认证,特别是JWT的应用。通过这份文档能够帮助开发者理解和实施高质量的微服务架构。 适用人群:适用于参与或计划参与微服务项目的开发团队,尤其是那些致力于提升REST API接口质量和效率的专业技术人员。 使用场景及目标:文档的目标在于引导用户理解REST API接口设计的关键要素,如资源命名、方法选择等,并教会他们如何有效管理和保护这些API,确保其稳定性和安全性。通过实践本指南的原则,用户可以构建出更加健壮的分布式应用程序接口。 其他说明:此外,文中提供了大量关于API文档生成与维护的最佳做法,强调了文档更新须与代码同步,同时也探讨了API变更管理的有效方法。在安全方面,重点讲述了JWT的构成及其工作机制,展示了利用JWT实现高效认证的具体实例。

    【电力变压器】基于matlab电力变压器能量限制【含Matlab源码 10013期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习多输入单输出时间序列预测的详细项目实例(含完整的程序,GUI设计和代码详解)

    内容概要:该文档详细介绍了基于双向长短期记忆(BiLSTM)神经网络与Adaboost集成学习的时间序列预测模型及其应用。文中阐述了项目背景,指出了传统LSTM在复杂数据下存在的局限,提出了通过BiLSTM增强前后依赖关系,并结合Adaboost优化模型精度与泛化能力的方法。全文涵盖了从数据预处理、特征提取到建模、评估、以及GUI设计在内的全过程,并展示了该模型在金融预测、气象预报、能源管理和生产调度等多个领域的广泛应用潜力。文章还包括对代码片段的具体解析、模型部署的考量及未来发展的展望。 适合人群:拥有基本的机器学习与神经网络基础的研究人员和技术开发者,尤其是那些正在寻找时间序列数据分析解决方案的专业人士。 使用场景及目标:1. 多个领域如金融市场、气象预测等的时间序列数据处理任务中;2. 解决传统单一神经网络可能出现的过拟合并优化模型的鲁棒性和准确性。 其他说明:除了详细讲解如何使用Matlab实施完整的BiLSTM和Adaboost集成外,文中还特别注意到了模型调优的重要性——通过超参数搜索、早停策略和其他正则化技巧以预防过拟合情况的发生。此外,文档还讨论了有关实时数据处理、模型安全性和可移植性的要点。附带完整的Matlab代码实现了从环境准备直到预测结果可视化的每一个步骤,使读者可以很容易地复现和定制整个工作流程。

    【重力仿真】基于matlab GUI水平圆柱体重力异常正演【含Matlab源码 11176期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    Go语言1.24版本新特性详解与高性能博客系统miniblog实战项目

    内容概要:Go 1.24 版本引入了多项关键改进,其中包括:泛型类型别名,允许类型别名携带类型参数,简化代码实现;弱指针避免对象因包含在缓存中而无法被释放的问题;改进了终结器,提供了新的运行时函数 AddCleanup 以增强对象清理的灵活性和可靠性。另外,Go 1.24 改善了 map 的默认实现,显著提升了其运行时性能。与此同时,开源项目 miniblog 是一个功能全面、易于理解的 Go 实战项目。该项目采用了类似 Kubernetes 的三层架构设计,涵盖了许多 Go 项目开发的最佳实践和技术栈,不仅有助于开发者理解 Go 项目的核心理念和实施方法,还能提供一系列开发脚手架工具、配套课程和支持材料,以便更轻松地开展实际项目。 适合人群:1年以上 Go 开发经验的研发人员或正在寻找优秀 Go 项目充实自己简历的技术人员。 使用场景及目标:该总结的目标是帮助有一定 Go 基础的知识分子迅速了解新特性及其实用价值。miniblog 项目特别适用于希望加深对 Go 实践认识的学习者,尤其是那些想要通过参与实际编码练习和深入理解 Go 内部工作机制的人群。通过这两个方面的内容学习可以帮助使用者更好地理解 Go 新增特性的应用前景和发展方向,并能够在实践中灵活应用。 其他说明:本文档不仅涵盖了新特性的技术和理论要点,同时也展示了如何通过动手实践强化技能的具体例子。阅读本文不仅可以学到最新的 Go 编程技巧,还将了解到实际开发过程中面临的挑战及其解决方案。此外,还提供了一份详细的安装指导,以及一些常见的操作指南。对于新手而言,可以通过提供的完整配套资料逐步建立起个人的知识体系;而对于资深开发者,则可以在更高层次上审视自身项目的架构设计,进而推动技术创新和个人职业发展。

    智能对话机器人+deepseek+支持微信公众号、企业微信应用、飞书、钉钉接入+基于大模型的智能对话机器人,支持微信公众号、企业

    CoW项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/Gemini/LinkAI/ChatGLM/KIMI/文心一言/讯飞星火/通义千问/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 功能如下: 1、 多端部署: 有多种部署方式可选择且功能完备,目前已支持微信公众号、企业微信应用、飞书、钉钉等部署方式 2、 基础对话: 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4o-mini, GPT-4o, GPT-4, Claude-3.5, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM-4,Kimi(月之暗面), MiniMax, GiteeAI 3、 语音能力: 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型 4、 图像能力: 支持图片生等

    【车间调度】基于matlab哈里斯鹰算法HHO求解分布式置换流水车间调度DPFSP【含Matlab源码 6143期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    【图像处理】颜色恒常性算法水下图像处理【含Matlab源码 474期】.md

    CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    【图像去噪】基于matlab中值滤波、均值滤波和非局部均值滤波NLM图像去噪【含Matlab源码 10364期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    基于LabVIEW的滚动轴承故障诊断系统:一种振动信号采集与故障诊断的实用设计与实践验证,基于LabVIEW的滚动轴承高效故障诊断系统设计与应用研究,基于LabVIEW的滚动轴承故障诊断系统. 实现对

    基于LabVIEW的滚动轴承故障诊断系统:一种振动信号采集与故障诊断的实用设计与实践验证,基于LabVIEW的滚动轴承高效故障诊断系统设计与应用研究,基于LabVIEW的滚动轴承故障诊断系统. 实现对滚动轴承工作状态的监测,提出了一种基于 Lab VIEW 的滚动轴承故障诊断系统的设计方案,给出了滚动轴承振动信号的采集与故障诊断方法,在 Lab VIEW 的诊断平台下进行信号处理与分析,然后结合滚动轴承故障诊断理论与信号分析结果来对该轴承运行状态进行判断。 最后利用旋转机械振动及故障模拟试验平台对该系统进行验证,验证结果体现了该系统具有可行性和适用性。 ,LabVIEW; 滚动轴承故障诊断系统; 振动信号采集; 故障诊断方法; 信号处理与分析; 验证测试; 可行性; 适用性,基于LabVIEW的滚动轴承故障诊断系统设计与验证

    Javascript语言视频教程.zip

    Javascript语言视频教程,涵盖Javascript语言基础和高级教程,零基础入门。

    在链表的前面-开头插入一个节点

    python在链表的前面-开头插入一个节点

    【图像融合】加权平均+HIS+高通滤波+灰度调制图像融合【含Matlab源码 8041期】.md

    CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    《基于改进动态窗口DWA模糊自适应调整权重的路径规划算法研究及其MATLAB实现》,《基于改进动态窗口DWA的模糊自适应权重调整路径规划算法及其MATLAB实现》,基于改进动态窗口 DWA 模糊自适应

    《基于改进动态窗口DWA模糊自适应调整权重的路径规划算法研究及其MATLAB实现》,《基于改进动态窗口DWA的模糊自适应权重调整路径规划算法及其MATLAB实现》,基于改进动态窗口 DWA 模糊自适应调整权重的路径基于改进动态窗口 DWA 模糊自适应调整权重的路径规划算法 MATLAB 源码+文档 《栅格地图可修改》 基本DWA算法能够有效地避免碰撞并尽可能接近目标点,但评价函数的权重因子需要根据实际情况进行调整。 为了提高DWA算法的性能,本文提出了一种改进DWA算法,通过模糊控制自适应调整评价因子权重,改进DWA算法的实现过程如下: 定义模糊评价函数。 模糊评价函数是一种能够处理不确定性和模糊性的评价函数。 它将输入值映射到模糊隶属度,根据规则计算输出值。 在改进DWA算法中,我们定义了一个三输入一输出的模糊评价函数,输入包括距离、航向和速度,输出为权重因子。 [1]实时调整权重因子。 在基本DWA算法中,权重因子需要根据实际情况进行调整,这需要人工干预。 在改进DWA算法中,我们通过模糊控制实现自适应调整,以提高算法的性能。 [2]评估路径。 通过路径的长度和避障情况等指标评估路

    基于MATLAB平台PCA算法的人脸识别系统:程序调试成功,可替换数据获取高准确率识别结果,基于MATLAB平台PCA算法的人脸识别系统:程序调试与自我数据替换实现高精度识别结果,基于MATLAB平台

    基于MATLAB平台PCA算法的人脸识别系统:程序调试成功,可替换数据获取高准确率识别结果,基于MATLAB平台PCA算法的人脸识别系统:程序调试与自我数据替换实现高精度识别结果,基于MATLAB平台PCA的人脸识别,程序已调通,可将自己的数据替进行识别。 得到识别准确率结果。 ,基于MATLAB平台PCA的人脸识别; 程序已调通; 数据替换; 识别准确率。,MATLAB平台PCA人脸识别程序:调通后实现高准确率识别

    【潮流计算】基于matlab GUI牛顿拉夫逊法解潮流【含Matlab源码 11034期】.mp4

    海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

Global site tag (gtag.js) - Google Analytics