`
刘小小尘
  • 浏览: 67525 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

hadoop InputFormat解析

 
阅读更多
在执行一个Job的时候,Hadoop会将输入数据划分成N个Split,然后启动相应的N个Map程序来分别处理它们。
数据如何划分?Split如何调度(如何决定处理Split的Map程序应该运行在哪台TaskTracker机器上)?划分后的数据又如何读取?这就是本文所要讨论的问题。

先从一张经典的MapReduce工作流程图出发:


1、运行mapred程序;
2、本次运行将生成一个Job,于是JobClient向JobTracker申请一个JobID以标识这个Job;
3、JobClient将Job所需要的资源提交到HDFS中一个以JobID命名的目录中。这些资源包括JAR包、配置文件、InputSplit、等;
4、JobClient向JobTracker提交这个Job;
5、JobTracker初始化这个Job;
6、JobTracker从HDFS获取这个Job的Split等信息;
7、JobTracker向TaskTracker分配任务;
8、TaskTracker从HDFS获取这个Job的相关资源;
9、TaskTracker开启一个新的JVM;
10、TaskTracker用新的JVM来执行Map或Reduce;
……
对于之前提到的三个问题,这个流程中的几个点需要展开一下。

首先是“数据如何划分”的问题。
在第3步中,JobClient向HDFS提交的资源就包含了InputSplit,这就是数据划分的结果。也就是说,数据划分是在JobClient上完成的。在这里,JobClient会使用指定的InputFormat将输入数据做一次划分,形成若干个Split。

InputFormat是一个interface。用户在启动MapReduce的时候需要指定一个InputFormat的implement。InputFormat只包含了两个接口函数:
InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;
RecordReader<K, V> getRecordReader(InputSplit split, JobConf job, Reporter reporter) throws IOException;
getSplits就是现在要使用的划分函数。job参数是任务的配置集合,从中可以取到用户在启动MapReduce时指定的输入文件路径。而numSplits参数是一个Split数目的建议值,是否考虑这个值,由具体的InputFormat实现来决定。
返回的是InputSplit数组,它描述了所有的Split信息,一个InputSplit描述一个Split。

InputSplit也是一个interface,具体返回什么样的implement,这是由具体的InputFormat来决定的。InputSplit也只有两个接口函数:
long getLength() throws IOException;
String[] getLocations() throws IOException;
这个interface仅仅描述了Split有多长,以及存放这个Split的Location信息(也就是这个Split在HDFS上存放的机器。它可能有多个replication,存在于多台机器上)。除此之外,就再没有任何直接描述Split的信息了。比如:Split对应于哪个文件?在文件中的起始和结束位置是什么?等等重要的特征都没有描述到。
为什么会这样呢?因为关于Split的那些描述信息,对于MapReduce框架来说是不需要关心的。框架只关心Split的长度(主要用于一些统计信息)和Split的Location(主要用于Split的调度,后面会细说)。
而Split中真正重要的描述信息还是只有InputFormat会关心。在需要读取一个Split的时候,其对应的InputSplit会被传递到InputFormat的第二个接口函数getRecordReader,然后被用于初始化一个RecordReader,以解析输入数据。也就是说,描述Split的重要信息都被隐藏了,只有具体的InputFormat自己知道。它只需要保证getSplits返回的InputSplit和getRecordReader所关心的InputSplit是同样的implement就行了。这就给InputFormat的实现提供了巨大的灵活性。

最常见的FileInputFormat(implements InputFormat)使用FileSplit(implements InputSplit)来描述Split。而FileSplit中有以下描述信息:
private Path file; // Split所在的文件
private long start; // Split的起始位置
private long length; // Split的长度,getLength()会返回它
private String[] hosts; // Split所在的机器名称,getLocations()会返回它
然后,配套使用的RecordReader将从FileSplit中获取信息,解析文件名为FileSplit.file的文件中从FileSplit.start到FileSplit.start+FileSplit.length之间的内容。
至于具体的划分策略,FileInputFormat默认为文件在HDFS上的每一个Block生成一个对应的FileSplit。那么自然,FileSplit.start就是对应Block在文件中的Offset、FileSplit.length就是对应Block的Length、FileSplit.hosts就是对应Block的Location。
但是可以设置“mapred.min.split.size”参数,使得Split的大小大于一个Block,这时候FileInputFormat会将连续的若干个Block分在一个Split中、也可能会将一个Block分别划在不同的Split中(但是前提是一个Split必须在一个文件中)。Split的Start、Length都好说,都是划分前就定好的。而Split的Location就需要对所有划在其中的Block的Location进行整合,尽量寻找它们共有的Location。而这些Block很可能并没有共同的Location,那么就需要找一个距离这些Block最近的Location作为Split的Location。

还有CombineFileInputFormat(implements InputFormat),它可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目)。虽然说设置“mapred.min.split.size”参数也可以让FileInputFormat做到这一点,但是FileSplit取的是连续的Block,大多数情况下这些Block可能并不会有共同的Location。
CombineFileInputFormat使用CombineFileSplit(implements InputSplit)来描述Split。CombineFileSplit的成员如下:
private Path[] paths; // 每个子Split对应一个文件
private long[] startoffset; // 每个子Split在对应文件中的起始位置
private long[] lengths; // 每个子Split的长度
private String[] locations; // Split所在的机器名称,getLocations()会返回它
private long totLength; // 所有子Split长度之和,getLength()会返回它
其中前三个数组一定是长度相等并且一一对应的,描述了每一个子Split的信息。而locations,注意它并没有描述每一个子Split,而描述的是整个Split。这是因为CombineFileInputFormat在打包一组子Split时,会考虑子Split的Location,尽量将在同一个Location(或者临近位置)出现的Split打包在一起,生成一个CombineFileSplit。而打包以后的locations自然就是由所有子Split的Location整合而来。
同样,配套使用的RecordReader将从CombineFileSplit中获取信息,解析每一个文件名为CombineFileSplit.paths[i]的文件中从CombineFileSplit.startoffset[i]到CombineFileSplit.startoffset[i]+CombineFileSplit.lengths[i]之间的内容。
具体到划分策略,CombineFileSplit先将输入文件拆分成若干个子Split,每个子Split对应文件在HDFS的一个Block。然后按照“mapred.max.split.size”配置,将Length之和不超过这个值的拥有共同Location的几个子Split打包起来,得到一个CombineFileSplit。最后可能会剩下一些子Split,它们不满足拥有共同Location这个条件,那么打包它们的时候就需要找一个距离这些子Split最近的Location作为Split的Location。

有时候,可能输入文件是不可以划分的(比如它是一个tar.gz,划分会导致它无法解压),这也是设计InputFormat时需要考虑的。可以重载FileInputFormat的isSplitable()函数来告知文件不可划分,或者干脆就从头实现自己的InputFormat。
由于InputSplit接口是非常灵活的,还可以设计出千奇百怪的划分方式。

接下来就是“Split如何调度”的问题。
前面在划分输入数据的时候,不断提到Location这个东西。InputSplit接口中有getLocations()、InputFormat的implement在生成InputSplit的时候需要关心对应Block的Location,并且当多个Block需要放到一个InputSplit的时候还需要对Location做合并。
那么这个Location到底用来做什么呢?它主要就是用来给Split的调度提供参考。

先简单介绍一下JobTracker是怎样将一个Split所对应的Map任务分派给TaskTracker的。在前面的流程图中,第6步JobTracker会从HDFS获取Job的Split信息,这将生成一系列待处理的Map和Reduce任务。JobTracker并不会主动的为每一个TaskTracker划分一个任务子集,而是直接把所有任务都放在跟Job对应的待处理任务列表中。
TaskTracker定期向JobTracker发送心跳,除了保持活动以外,还会报告TaskTracker当前可以执行的Map和Reduce的剩余配额(TaskTracker总的配额由“mapred.tasktracker.map.tasks.maximun”和“mapred.tasktracker.reduce.tasks.maximun”来配置)。如果JobTracker有待处理的任务,TaskTracker又有相应的配额,则JobTracker会在心跳的应答中给JobTracker分配任务(优先分配Map任务)。
在分配Map任务时,Split的Location信息就要发挥作用了。JobTracker会根据TaskTracker的地址来选择一个Location与之最接近的Split所对应的Map任务(注意一个Split可以有多个Location)。这样一来,输入文件中Block的Location信息经过一系列的整合(by InputFormat)和传递,最终就影响到了Map任务的分配。其结果是Map任务倾向于处理存放在本地的数据,以保证效率。
当然,Location仅仅是JobTracker在分配Map任务时所考虑的因素之一。JobTracker在选择任务之前,需要先选定一个Job(可能正有多个Job等待处理),这取决于具体TaskScheduler的调度策略。然后,JobTracker又会优先选择因为失败而需要重试的任务,而重试任务又尽量不要分配到它曾经执行失败过的机器上。
JobTracker在分配Reduce任务时并不考虑Location,因为大部分情况下,Reduce处理的是所有Map的输出,这些Map遍布在Hadoop集群的每一个角落,考虑Location意义不大。

最后就是“划分后的数据如何读取”的问题。
接下来,在前面的流程图的第10步,TaskTracker就要启动一个新的JVM来执行Map程序了。在Map执行的时候,会使用InputFormat.getRecordReader()所返回的RecordReader对象来读取Split中的每一条记录(getRecordReader函数中会使用InputSplit对RecordReader进行初始化)。
咋一看,RecordReader似乎会使用Split的Location信息来决定数据应该从哪里去读。但是事实并非如此。前面也说过,Split的Location很可能是被InputFormat整合过的,可能并不是Block真正的Location(就算是,也没法保证从InputSplit在JobClient上被生成到现在的这段时间之内,Block没有被移动过)。
说白了,Split的Location其实是InputFormat期望这个Split被处理的Location,它完全可以跟实际Block的Location没有半点关系。InputFormat甚至可以将Split的Location定义为“距离Split所包含的所有Block的Location最远的那个Location”,只不过大多数时候我们肯定是希望Map程序在本地就能读取到输入数据的。

所以说,RecordReader并不关心Split的Location,只管Open它的Path。前面说过,RecordReader是由具体的InputFormat创建并返回的,它跟对应的InputFormat所使用的InputSplit必定是配对的。比如,对应于FileSplit,RecordReader要读取FileSplit.file文件中的相应区间、对应于CombineFileSplit,RecordReader要读取CombineFileSplit.paths中的每个文件的相应区间。

RecordReader对一个Path的Open操作由DFSClient来完成,它会向HDFS的NameNode获取对应文件在对应区间上的Block信息:依次有哪些Block、每个Block各自的Location。而要读写一个Block的时候,DFSClient总是使用NameNode返回的第一个Location,除非读写失败才会依次选择后面的Location。
而NameNode在处理Open请求时(getBlockLocations),在得到一个Block有哪些Location之后,会以DFSClient所在的地址为依据,对这些Location进行排序,距离越小的越排在前。而DFSClient又总是会选择排在前面的Location,所以,最终RecordReader会倾向于读取本地的数据(如果有的话)。

但是,不管Block是不是本地的,DFSClient都会向DataNode建立连接,然后请求数据。并不会因为Block是本地的而直接读磁盘上的文件,因为这些文件都是由DataNode来管理的,需要通过DataNode来找到Block所对应的物理文件、也需要由DataNode来协调对文件的并发读写。所以本地与非本地的差别仅仅在于网络传输上,前者是仅仅在本地网络协议栈上面绕一圈、而后者则是真正的网络通讯。在Block离得不远、且网络比较畅通的情况下,非Local并不意味着太大的开销。
所以Hadoop优先追求Map的Data-local,也就是输入数据存放在本地。如果不能满足,则退而求其次,追求Rack-local,也就是输入数据存放在同一机架的其他机器上,这样的话网络开销对性能影响一般不会太大。而如果这两种情况都不能满足,则网络传输可能会带来较大的开销,Hadoop会尽量去避免。这也就是之前提到的,在属于同一Split的Block没有共同Location的情况下,要计算一下离它们最近的Location的原因。

至此,关于InputFormat的数据划分、Split调度、数据读取三个问题就分析完了。
分享到:
评论

相关推荐

    Hadoop源码解析---MapReduce之InputFormat

    在Hadoop的生态系统中,MapReduce是处理海量数据的一种编程模型,而InputFormat作为MapReduce编程模型的重要组成部分,是负责处理输入数据的关键接口。为了深入理解MapReduce工作原理,必须掌握InputFormat的设计和...

    SequenceFileKeyValueInputFormat:自定义 Hadoop InputFormat

    Apache Hive 的 InputFormat,在查询 SequenceFiles 时将返回 (Text) 键和 (Text) 值。 我需要在不拆分内容的情况下完整解析大量文本文件。 HDFS 在处理大型连续文件时提供最佳吞吐量,因此我使用 Apache Mahout 将...

    自定义MapReduce的InputFormat

    在Hadoop MapReduce框架中,InputFormat是处理输入数据的核心组件。它负责将原始数据分割成逻辑上的键值对(key-value pairs),然后为每个分区分配一个或多个这些键值对给Mapper。默认情况下,Hadoop支持如...

    Hadoop Real-World Solutions Cookbook 源代码

    以下是基于这些章节的源代码所涵盖的Hadoop相关知识点的详细解析: 1. **Chap 1 - Hadoop基础知识**:这部分可能涉及Hadoop生态系统的基本组件,如HDFS(Hadoop分布式文件系统)和MapReduce。HDFS是Hadoop的核心,...

    hadoop-2.7.6-src

    《Hadoop 2.7.6源码解析与探索》 Hadoop,作为大数据处理领域的重要框架,一直以来都是开发者和研究者关注的焦点。本文将深入探讨Hadoop 2.7.6版本的源码,带领读者理解其内部机制,为理解和使用Hadoop提供更深入的...

    hadoop-common-2.7.1-bin-master.zip

    7. **配置管理**:Hadoop的配置文件管理和解析也由Common组件提供,例如core-site.xml和hdfs-site.xml等,这些配置文件定义了Hadoop的行为和参数。 总结来说,"hadoop-common-2.7.1-bin-master.zip"不仅包含了使...

    Hadoop: The Definitive Guide 中英两版

    英文版则为原汁原味的技术解析,对于英语基础扎实的读者,可以获取到更准确的术语和最新的技术发展。 在书中,你将学习到: 1. **Hadoop的起源与设计原则**:Hadoop是如何从Google的论文中诞生,以及它如何遵循...

    hadoop打造一个搜索引擎

    1. **爬虫实现**:如何使用Hadoop处理网络爬虫抓取的数据,可能涉及Hadoop Streaming或者自定义InputFormat和Mapper。 2. **解析与预处理**:介绍如何利用Hadoop对抓取的网页进行解析和预处理,比如去除停用词、词干...

    Hadoop高级编程- 构建与实现大数据解决方案

    通过学习这些内容,你将具备构建和实施复杂大数据解决方案的能力,无论是在企业内部的业务分析,还是在科研领域的数据挖掘,都能游刃有余地利用Hadoop来处理和解析海量数据。在实践中不断探索和优化,你将成为一名...

    hadoop 1.2.1核心源码

    Hadoop提供了一套API,允许开发者处理各种数据格式,如TextInputFormat、SequenceFileInputFormat等,以及自定义InputFormat以适应特定的数据源。 4. **fs**: 文件系统接口(FileSystem API)位于此目录中,它抽象...

    hadoop-src源代码

    3. `InputFormat`和`OutputFormat`:定义输入数据的格式和输出数据的格式。源码中展现了如何自定义输入输出格式,以适应各种数据处理需求。 五、Hadoop源码的学习价值 深入阅读Hadoop源码,有助于理解分布式系统的...

    hadoop api.doc

    10. **org.apache.hadoop.util**: 提供了一系列通用的工具类和方法,如`GenericOptionsParser`解析命令行参数,`Progressable`接口允许在执行过程中报告进度,以及`StringUtils`包含字符串操作的辅助方法。...

    Java写的hadoop压缩worldcount例子

    `InputFormat`会解析压缩文件,将压缩块转化为可以被Map任务处理的记录。`OutputFormat`则会在Reduce阶段结束后,将结果数据压缩后再写入到HDFS。 此外,为了使程序能正确运行,还需要正确配置Hadoop的环境变量,...

    hadoop 2.5 文档

    本文将详细解析《hadoop 2.5 文档》中涵盖的关键知识点,旨在帮助Hadoop开发人员深入理解并熟练运用这一强大的工具。 首先,Hadoop的核心由两个主要组件构成:Hadoop Distributed File System (HDFS) 和 MapReduce...

    hadoop中实现java网络爬虫(示例讲解)

    创建一个Hadoop的InputFormat类,定义如何将爬取的数据划分为键值对供MapReduce使用。 7. **实现MapReduce作业** 编写Map函数,从InputFormat中读取数据,解析每个URL的HTML内容。Reduce函数则负责聚合和处理这些...

    hadoop 2.5.2 源码

    - 通过阅读源码,开发者可以自定义Hadoop的行为,例如编写自定义InputFormat、OutputFormat或Partitioner。 - 调试工具,如Hadoop的日志系统和JMX监控,可以帮助定位和解决问题。 6. 性能优化 - 通过对源码的...

    hadoop-3.1.2-src.tar.gz

    2. 功能扩展:Hadoop提供了丰富的API,允许开发人员根据需求扩展其功能,如自定义InputFormat、OutputFormat、Partitioner等。源码中包含了大量的示例,可以帮助我们更好地理解和使用这些接口。 四、Hadoop在实际...

    尚硅谷大数据技术之Hadoop

    3. MapReduce原理与编程模型:深入解析Map函数和Reduce函数的实现,以及如何编写Mapper和Reducer类,理解job、task、input/output format等概念。 4. Hadoop实战:通过实际案例分析,演示如何使用Hadoop解决实际问题...

    Hadoop源代码分析(IDs类和Context类)

    - `mapreduce.inputformat.class`:指定输入格式的实现类; - `mapreduce.map.class`:指定Mapper的实现类; - `mapreduce.combine.class`:指定Combiner的实现类(如果有的话); - `mapreduce.reduce.class`:...

    Hadoop MapReduce Cookbook 源码

    3. **数据输入与输出**:探讨InputFormat和OutputFormat接口,理解如何自定义输入输出格式以适应不同类型的数据源。 4. **错误处理与容错机制**:讲解Hadoop的检查点、重试和故障恢复策略,以确保任务的可靠性。 5...

Global site tag (gtag.js) - Google Analytics