`

13-Hibernate3.6.2 悲观锁和乐观锁

阅读更多

 

         在使用Hibernate的过程中,我们会遇到多人对同一个数据同时进行修改,这个时候就会产生脏数据,造成数据的不一致性。为了避免更新数据的丢失,Hibernate采用了锁的机制。

Hibernate提供了两种锁的机制:悲观锁和乐观锁

         悲观锁:在数据有加载的时候就给其进行加锁,直到该锁被释放掉,其他用户才可以进行修改;

         乐观锁:在对数据进行修改的时候,对数据采用版本号或者时间戳等方式来比较,数据是否一致性来实现加锁;

 

一、悲观锁

         悲观锁是依靠数据库提供的锁机制。Hibernate是通过使用数据库的for update子句实现了悲观锁机制。

 

Hibernate有如下五种加锁机制

       1、  LockMode.NONE:无锁机制;

       2、  LockMode.WRITEHibernateInsertUpdate记录的时候会自动获取

       3、  LockMode.READHibernate在读取记录的时候会自动获取

       4、  LockMode.UPGRADE:利用数据库的for update子句加锁

       5、  LockMode.UPGRADE_NOWAITOracle的特定实现,利用Oraclefor update nowait子句实现加锁

 

悲观加锁一般通过以下三种方法实现:

         1Criteria.setLockMode

         2Query.setLockMode

3Session.lock

 

	public void query(int id){
		Session session = HibernateUtil.getSession();
		Transaction tx = session.beginTransaction();
		String hql = "from Users as u where id= :id";
		List list = session.createQuery(hql)
		            .setLockMode("u", LockMode.UPGRADE)   //执行加锁
		            .setInteger("id", id)
		            .list();
		for(Iterator iterator = list.iterator();iterator.hasNext();){
			Users users = (Users) iterator.next();
			System.out.println(users.getBirthday());
		}	
	}

 

select users0_.id as id0_, users0_.ver as ver0_, 
users0_.birthday as birthday0_, users0_.first_name as first4_0_, users0_.last_name as last5_0_ from Users users0_ 
with (updlock, rowlock) where users0_.id=?

 

悲观锁在对数据进行加锁后,会一直“霸占”该数据,直到释放掉,其他用户才可以对该数据进行更新。这里就存在一个问题,如果它一直占着不放,那么其他用户永远也不可能对该数据进行更新,这样就很不利于并发了。对于这个问题的解决方案,可以利用乐观锁。

 

二、乐观锁

乐观锁大多是基于数据版本记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

我们可以通过class描述符的optimistic-lock属性结合version描述符指定乐观锁。

  1. none:无乐观锁

2. version:通过版本机制实现乐观锁

           3. dirty:通过检查发生变动过的属性实现乐观锁

           4. all:通过检查所有属性实现乐观锁

 

在实现乐观锁的持久化类我们需要为该持久化类增加一个version属性,并且提供相应的gettersetter方法。如下

public class Users {
		private int id;
		private Date birthday;
		private Name name;
		private int version;

		//舍掉getter和setter方法
	}

 

 

<hibernate-mapping package="com.hibernate.domain">
	<class name="Users" optimistic-lock="version">
		<id name="id">
			<generator class="native" />
		</id>
		<version name="version" />
		
		<property name="birthday" />
		
		<!-- 映射组件元素 -->
		<component name="name">
			<!-- 映射组件的name属性指向包含实体 -->
			<property name="firstName" column="first_name"/>
			<property name="lastName" column="last_name"/>
		</component>
	</class>
</hibernate-mapping>

注意:version 节点必须出现在ID 节点之后。

 

在这里我们声明了一个version属性,该属性用于存放用户的版本信息。我们对user表每一次更新操作,都会引起version属性的变化:加1。如果我们尝试在tx.commit 之前,启动另外一个Session,对名为同一个用户进行操作,就是并发更新的情形了:

public void update(){
		//开启事务tx1
		Session session1 = HibernateUtil.getSession();          
		Transaction tx1 = session1.beginTransaction();
		Users users1 = (Users) session1.get(Users.class, 1);           //获取id为1的用户
		
		//开启事务tx2
		Session session2 = HibernateUtil.getSession();
		Transaction tx2 = session2.beginTransaction();
		Users users2 = (Users) session2.get(Users.class, 1);         //获取id为1的用户
		
		users1.getName().setFirstName("first name1");  
		users2.getName().setFirstName("first name2");
		
		tx1.commit();             //..........1
		tx2.commit();             //..........2

		session1.close();
		session2.clear();
		
	}

 

执行以上代码,代码将在.....2处抛出StaleObjectStateException常,并指出版本检查失败。

 

 

 在这里是先提交者成功,后提交者失败。当前事务正在试图提交一个过期数据。通过捕捉这个异常,我们就可以在乐观锁校验失败时进行相应处理。

  • 大小: 226.8 KB
分享到:
评论

相关推荐

    精通 Hibernate:Java 对象持久化技术详解(第2版).part2

     21.5 利用Hibernate的版本控制来实现乐观锁  21.5.1 使用元素  21.5.2 使用元素  21.5.3 对游离对象进行版本检查  21.5.4 强制更新版本  21.6 实现乐观锁的其他方法  21.7 小结  21.8 思考题 第22章 管理...

    精通 Hibernate:Java 对象持久化技术详解(第2版).part4

     21.5 利用Hibernate的版本控制来实现乐观锁  21.5.1 使用元素  21.5.2 使用元素  21.5.3 对游离对象进行版本检查  21.5.4 强制更新版本  21.6 实现乐观锁的其他方法  21.7 小结  21.8 思考题 第22章 管理...

    精通 Hibernate:Java 对象持久化技术详解(第2版).part3

     21.5 利用Hibernate的版本控制来实现乐观锁  21.5.1 使用元素  21.5.2 使用元素  21.5.3 对游离对象进行版本检查  21.5.4 强制更新版本  21.6 实现乐观锁的其他方法  21.7 小结  21.8 思考题 第22章 管理...

    精通 Hibernate:Java 对象持久化技术详解(第2版).part1.rar

     21.5 利用Hibernate的版本控制来实现乐观锁  21.5.1 使用元素  21.5.2 使用元素  21.5.3 对游离对象进行版本检查  21.5.4 强制更新版本  21.6 实现乐观锁的其他方法  21.7 小结  21.8 思考题 第22章 管理...

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    梦限大mewtype成员 藤都子RVC模型

    考虑微网新能源经济消纳的共享储能优化配置附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    tokenizers-0.30.0.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    人形机器人是当今世界科技领域最具潜力和前景的产业之一 随着科技的不断进步和人工智能技术的快速发展,人形机器人作为未来产业的新赛道和经济增长的新引擎,将深刻变革人类生产生活方式,重塑全球产业发展格局

    人形机器人产业的发展需要人工智能、高端制造、新材料等先进技术的协同创新和突破。

    【状态估计】用于非标量系统估计的最优卡尔曼滤波附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    开关电源的尖峰干扰及其抑制.zip

    开关电源的尖峰干扰及其抑制.zip

    房地产培训 -新进业务员压马路市调培训.ppt

    房地产培训 -新进业务员压马路市调培训.ppt

    MATLAB实现计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度

    内容概要:本文探讨了基于MATLAB平台的虚拟电厂优化调度方法,特别关注电转气(P2G)协同、碳捕集技术和垃圾焚烧的应用。文中介绍了虚拟电厂的概念及其重要性,详细解释了碳捕集、需求响应和电转气协同调度的关键技术,并展示了如何使用MATLAB和CPLEX求解器进行优化调度的具体步骤。通过定义决策变量、构建目标函数和设定约束条件,最终实现了多目标优化,即经济性最优和碳排放最低。此外,还讨论了一些常见的代码实现技巧和潜在的问题解决方案。 适合人群:从事能源管理和优化调度研究的专业人士,尤其是那些熟悉MATLAB编程和优化算法的人士。 使用场景及目标:适用于希望深入了解虚拟电厂运作机制和技术实现的研究人员和工程师。主要目标是通过优化调度提高能源利用效率,减少碳排放,降低成本。 其他说明:文章提供了详细的代码片段和理论分析,有助于读者更好地理解和复现实验结果。同时,强调了在实际应用中需要注意的一些细节问题,如约束条件的平衡、求解器配置等。

    在网格化数据集上轻松执行 2D 高通、低通、带通或带阻滤波器研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-pinecone-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-pinecone-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-pinecone-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-pinecone-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-pinecone-store,1.0.0-M7,org.springframework.ai.vectorstore.pinecone,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,pinecone,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-pinecone

    基于MATLAB混合整数规划的微网电池储能容量优化配置

    内容概要:本文详细介绍了如何使用MATLAB及其优化工具箱,通过混合整数规划(MILP)方法对微网电池储能系统的容量进行优化配置。主要内容包括定义目标函数(如最小化运行成本),设置约束条件(如充放电功率限制、能量平衡约束),并引入决策变量(如电池容量、充放电功率和状态)。文中提供了具体的MATLAB代码示例,演示了如何将实际问题转化为数学模型并求解。此外,还讨论了一些实用技巧,如避免充放电互斥冲突、考虑电池寿命损耗等。 适用人群:从事微电网设计与运维的技术人员,尤其是那些希望通过优化算法提高系统性能和经济效益的专业人士。 使用场景及目标:适用于需要确定最佳电池储能容量的微电网项目,旨在降低总体运行成本,提高系统的稳定性和可靠性。具体应用场景包括工业园区、商业建筑或其他分布式能源系统。 其他说明:文章强调了模型的实际应用价值,并指出通过精确控制充放电策略可以显著减少不必要的容量闲置,从而节省大量资金。同时提醒读者注意模型的时间粒度选择、电池退化成本等因素的影响。

    langchain4j-ollama-1.0.0-beta1.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    光伏离网并网逆变器设计:基于TMS320F28335的数字控制与SPWM技术详解

    内容概要:本文详细介绍了基于TMS320F28335的光伏离网并网逆变器设计方案,涵盖了从硬件架构到软件控制的各个方面。首先,文章阐述了TMS320F28335作为高性能DSP的优势及其初始化配置方法。其次,探讨了逆变器的数字控制策略,如双闭环控制(电压外环和电流内环)的具体实现方式。然后,深入讲解了SPWM(正弦脉宽调制)技术,包括SPWM波的生成方法和相关代码示例。此外,还讨论了硬件保护逻辑、过流检测、死区时间配置等实际应用中的注意事项。最后,提供了调试经验和学习资源建议。 适合人群:从事光伏逆变器设计、嵌入式系统开发的技术人员,尤其是有一定DSP编程基础的研发人员。 使用场景及目标:适用于需要深入了解光伏逆变器设计原理和技术实现的研究人员和工程师。主要目标是掌握基于TMS320F28335的逆变器控制系统设计,包括数字控制策略和SPWM技术的应用。 其他说明:文中提供的代码示例和实践经验有助于读者更好地理解和应用于实际项目中。建议读者结合TI官方提供的学习资料进行进一步学习和实践。

    【医疗影像分析】深度学习技术在医疗影像分析中的应用优势及未来发展方向:自动特征学习、高精度高效处理、多模态数据融合、个性化治疗与预测、实时远程支持

    内容概要:深度学习在医疗影像分析中展现出显著的优势,主要体现在自动特征学习、高准确性和效率、多模态数据融合与综合分析、个性化治疗与预测、减少主观性、处理复杂和高维数据、实时分析与远程医疗支持、数据挖掘与科研突破以及可扩展性与持续优化九个方面。通过卷积神经网络(CNN)、U-Net等模型,深度学习能够自动从影像中提取多层次特征,无需手动干预,在分类、分割任务中表现出色,处理速度远超人工。此外,它还能够整合多源数据,提供全面的诊断依据,实现个性化治疗建议,减少误诊和漏诊,支持实时分析和远程医疗,挖掘病理模式并加速研究,同时具有可扩展性和持续优化的能力。; 适合人群:医疗行业从业者、科研人员、计算机视觉和深度学习领域的研究人员。; 使用场景及目标:①用于医疗影像的自动特征提取和分类,如乳腺癌筛查、皮肤癌诊断等;②整合多模态数据,如CT、MRI等,提高诊断准确性;③提供个性化治疗建议,优化治疗方案;④支持实时分析和远程医疗,尤其适用于偏远地区的急诊场景;⑤挖掘病理模式,加速疾病机制的研究。; 其他说明:深度学习正逐渐成为医疗影像分析的核心诊断伙伴,未来发展方向包括增强可解释性、保护数据隐私和轻量化部署,旨在进一步提升医疗效率和患者护理质量。

    深度学习机器学习子领域关键技术解析:神经网络基础、常见架构及应用场景综述

    内容概要:深度学习是机器学习的一个子领域,通过构建多层次的“深度神经网络”来模拟人脑结构,从而学习和提取数据的复杂特征。文章介绍了深度学习的核心概念,包括神经元、多层感知机、深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等常见网络结构。同时,详细讲解了激活函数、损失函数与优化器的作用。此外,还探讨了深度学习的关键突破,如大数据与算力的支持、正则化技术和迁移学习的应用。文中列举了深度学习在计算机视觉、自然语言处理、语音与音频以及强化学习等领域的应用场景,并指出了其面临的挑战,如数据依赖、计算成本和可解释性问题。最后提供了使用PyTorch和TensorFlow/Keras框架的经典代码示例,涵盖图像分类、文本生成和迁移学习等内容。; 适合人群:对机器学习有一定了解,希望深入学习深度学习理论和技术的研究人员、工程师及学生。; 使用场景及目标:①理解深度学习的基本原理和核心概念;②掌握常见深度学习框架的使用方法,如PyTorch和TensorFlow;③能够根据具体应用场景选择合适的网络结构和算法进行实践。; 其他说明:本文不仅提供了理论知识,还附带了详细的代码示例,便于读者动手实践。建议读者结合理论与实践,逐步深入理解深度学习的各个方面。

Global site tag (gtag.js) - Google Analytics