`
iwinit
  • 浏览: 454625 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
文章分类
社区版块
存档分类
最新评论

[HBase]Get

阅读更多

Get主要流程:

1.拼装Scanner

2.调用scanner的next方法取记录

3.返回result

 

scanner入口是RegionScanner,代表扫描一个region,其实现RegionScannerImpl有一个属性KeyValueHeap,这个KeyValueHeap又包装了多个StoreScanner。每个StoreScanner对应一个column family,而每个StoreScanner又对应一个MemStoreScanner和多个StoreFileScanner。MemStoreScanner代表对memstore进行scan,StoreFileScanner对应一个storefile。其类图如下

 

0.94里实现如下

HRegion的Get入口

 

private List<KeyValue> get(Get get, boolean withCoprocessor)
  throws IOException {
    long now = EnvironmentEdgeManager.currentTimeMillis();

    List<KeyValue> results = new ArrayList<KeyValue>();

	.....
	//转成Scan,startRow和stopRow一样
    Scan scan = new Scan(get);

    RegionScanner scanner = null;
    try {
	//按照上述结构,构造scanner,这里会有seek操作,表示scanner已经做好next准备了
      scanner = getScanner(scan);
	//取数据
      scanner.next(results);
    } finally {
      if (scanner != null)
        scanner.close();
    }
	......
    
    return results;
  }
 RegionScannerImpl构造
    RegionScannerImpl(Scan scan, List<KeyValueScanner> additionalScanners) throws IOException {

      this.maxResultSize = scan.getMaxResultSize();
      this.filter = scan.getFilter();
      this.batch = scan.getBatch();
      if (Bytes.equals(scan.getStopRow(), HConstants.EMPTY_END_ROW)) {
        this.stopRow = null;
      } else {
        this.stopRow = scan.getStopRow();
      }
      // If we are doing a get, we want to be [startRow,endRow] normally
      // it is [startRow,endRow) and if startRow=endRow we get nothing.
	//get式的scan为-1
      this.isScan = scan.isGetScan() ? -1 : 0;

      // synchronize on scannerReadPoints so that nobody calculates
      // getSmallestReadPoint, before scannerReadPoints is updated.
	//支持脏读,默认COMMITTED才能读
      IsolationLevel isolationLevel = scan.getIsolationLevel();
      synchronized(scannerReadPoints) {
        if (isolationLevel == IsolationLevel.READ_UNCOMMITTED) {
          // This scan can read even uncommitted transactions
          this.readPt = Long.MAX_VALUE;
          MultiVersionConsistencyControl.setThreadReadPoint(this.readPt);
        } else {
          this.readPt = MultiVersionConsistencyControl.resetThreadReadPoint(mvcc);
        }
        scannerReadPoints.put(this, this.readPt);
      }

      .....
	//每个需要scan的store构造scanner
      for (Map.Entry<byte[], NavigableSet<byte[]>> entry :
          scan.getFamilyMap().entrySet()) {
        Store store = stores.get(entry.getKey());
        StoreScanner scanner = store.getScanner(scan, entry.getValue());
        scanners.add(scanner);
      }
	//store的scanner集合
      this.storeHeap = new KeyValueHeap(scanners, comparator);
    }
 StoreScanner构造,columns为需要scan的列名
  StoreScanner(Store store, Scan scan, final NavigableSet<byte[]> columns)
                              throws IOException {
    this(store, scan.getCacheBlocks(), scan, columns, store.scanInfo.getTtl(),
        store.scanInfo.getMinVersions());
    initializeMetricNames();
    if (columns != null && scan.isRaw()) {
      throw new DoNotRetryIOException(
          "Cannot specify any column for a raw scan");
    }
	//核心Query,作用是对keyvalue在next迭代的时候判断当前keyvalue是否满足条件,决定下一步是跳过当前kv,跳过当前column还是直接到下一行
    matcher = new ScanQueryMatcher(scan, store.scanInfo, columns,
        ScanType.USER_SCAN, Long.MAX_VALUE, HConstants.LATEST_TIMESTAMP,
        oldestUnexpiredTS);

    // Pass columns to try to filter out unnecessary StoreFiles.
	//这里构造了memstoreScanner和StoreFileScanner
    List<KeyValueScanner> scanners = getScannersNoCompaction();

    Store.openScannerOps.incrementAndGet();
    Store.openedScannerNum.addAndGet(scanners.size());

    // Seek all scanners to the start of the Row (or if the exact matching row
    // key does not exist, then to the start of the next matching Row).
    // Always check bloom filter to optimize the top row seek for delete
    // family marker.
	//执行seek操作
    if (explicitColumnQuery && lazySeekEnabledGlobally) {
      for (KeyValueScanner scanner : scanners) {
        scanner.requestSeek(matcher.getStartKey(), false, true);
      }
    } else {
      for (KeyValueScanner scanner : scanners) {
        scanner.seek(matcher.getStartKey());
      }
    }

    // Combine all seeked scanners with a heap
	//所有scanner组合成一个KeyValueHeap,按照seek的第一个keyvalue排序,结果是按照column family顺序scan
    heap = new KeyValueHeap(scanners, store.comparator);

    this.store.addChangedReaderObserver(this);
  }
 Store获取所有scanner
  protected List<KeyValueScanner> getScanners(boolean cacheBlocks,
      boolean isGet,
      boolean isCompaction,
      ScanQueryMatcher matcher) throws IOException {
    List<StoreFile> storeFiles;
    List<KeyValueScanner> memStoreScanners;
    this.lock.readLock().lock();
    try {
      storeFiles = this.getStorefiles();
	//MemstoreScanner
      memStoreScanners = this.memstore.getScanners();
    } finally {
      this.lock.readLock().unlock();
    }

    // First the store file scanners

    // TODO this used to get the store files in descending order,
    // but now we get them in ascending order, which I think is
    // actually more correct, since memstore get put at the end.
	//StoreFileScanner集合,这里会打开HDFS文件流
    List<StoreFileScanner> sfScanners = StoreFileScanner
      .getScannersForStoreFiles(storeFiles, cacheBlocks, isGet, isCompaction, matcher);
    List<KeyValueScanner> scanners =
      new ArrayList<KeyValueScanner>(sfScanners.size()+1);
    scanners.addAll(sfScanners);
    // Then the memstore scanners
    scanners.addAll(memStoreScanners);
    return scanners;
  }
 KeyValueHeap结构
  public KeyValueHeap(List<? extends KeyValueScanner> scanners,
      KVComparator comparator) throws IOException {
	//scanner比较器,按照peek的第一个kv对象排序,小的scanner先扫描
    this.comparator = new KVScannerComparator(comparator);
    if (!scanners.isEmpty()) {
	//scanner队列,因为同一个store可能有多个scanner
      this.heap = new PriorityQueue<KeyValueScanner>(scanners.size(),
          this.comparator);
      for (KeyValueScanner scanner : scanners) {
	//之前scanner已经seek过了,所以peek可以直接取kv,如果seek到了,则添加到队列
        if (scanner.peek() != null) {
          this.heap.add(scanner);
        } else {
          scanner.close();
        }
      }
	//取第一个scanner,多个scanner情况下会按照peek的一个kv对象排序,小的scanner先扫描
	//其结果是优先扫描MemStore,再按照StoreFile俺sequenceId从小到大扫描
      this.current = pollRealKV();
    }
 看看KVScannerComparator,先按kv排序,一样则按sequenceid排序
   public int compare(KeyValueScanner left, KeyValueScanner right) {
      int comparison = compare(left.peek(), right.peek());
	//直接比较keyvalue
      if (comparison != 0) {
        return comparison;
      } else {
	//如果keyvalue对象一样,这个情况很少,则按照sequenceId比较,注意MemStoreScanner有最大的id
        // Since both the keys are exactly the same, we break the tie in favor
        // of the key which came latest.
        long leftSequenceID = left.getSequenceID();
        long rightSequenceID = right.getSequenceID();
        if (leftSequenceID > rightSequenceID) {
          return -1;
        } else if (leftSequenceID < rightSequenceID) {
          return 1;
        } else {
          return 0;
        }
      }
    }
  }
 以上就是scanner构造过程,RegionScannerImpl开始next取数据,注意这里是'Grab the next row's worth of values',就是取下一行,因为get操作只会涉及单行数据
private boolean nextInternal(int limit) throws IOException {
      RpcCallContext rpcCall = HBaseServer.getCurrentCall();
      while (true) {
	//client是否已经关闭连接
        if (rpcCall != null) {
          // If a user specifies a too-restrictive or too-slow scanner, the
          // client might time out and disconnect while the server side
          // is still processing the request. We should abort aggressively
          // in that case.
          rpcCall.throwExceptionIfCallerDisconnected();
        }
	//从Heap中拿当前seek到的row
        byte [] currentRow = peekRow();
	//判断是否是stopRow,currentRow为null或currentRow大于等于stopRow,所以这里实现了‘)’操作
        if (isStopRow(currentRow)) {
          if (filter != null && filter.hasFilterRow()) {
            filter.filterRow(results);
          }
          if (filter != null && filter.filterRow()) {
            results.clear();
          }

          return false;
        } 
	//filter行过滤
	else if (filterRowKey(currentRow)) {
          nextRow(currentRow);
        } else {
          byte [] nextRow;
		//内循环,从heap中取kv数据,直到满足limit或者跨行,因为这里只去单行数据
          do {
		//从heap中批量获取keyvalue
            this.storeHeap.next(results, limit - results.size());
		//取满limit,默认没限制,limit为-1
            if (limit > 0 && results.size() == limit) {
              if (this.filter != null && filter.hasFilterRow()) {
                throw new IncompatibleFilterException(
                  "Filter with filterRow(List<KeyValue>) incompatible with scan with limit!");
              }
              return true; // we are expecting more yes, but also limited to how many we can return.
            }
          } while (Bytes.equals(currentRow, nextRow = peekRow()));

          final boolean stopRow = isStopRow(nextRow);

          // now that we have an entire row, lets process with a filters:

          // first filter with the filterRow(List)
		//过滤
          if (filter != null && filter.hasFilterRow()) {
            filter.filterRow(results);
          }
		......
          return !stopRow;
        }
      }
    }
 RegionScannerImpl的KeyValueHeap取数,这个KeyValueHeap里的scanner都是StoreScanner,按照seek之后的第一个keyvalue排序,就是按照column family顺序从小到大排序
public boolean next(List<KeyValue> result, int limit) throws IOException {
    if (this.current == null) {
      return false;
    }
    InternalScanner currentAsInternal = (InternalScanner)this.current;
	//第一个StoreScanner取数
    boolean mayContainMoreRows = currentAsInternal.next(result, limit);
	//取完之后的peek值
    KeyValue pee = this.current.peek();
    /*
     * By definition, any InternalScanner must return false only when it has no
     * further rows to be fetched. So, we can close a scanner if it returns
     * false. All existing implementations seem to be fine with this. It is much
     * more efficient to close scanners which are not needed than keep them in
     * the heap. This is also required for certain optimizations.
     */
	//scan结束,关闭scanner
    if (pee == null || !mayContainMoreRows) {
      this.current.close();
    } 
	//当前scanner还没结束,继续
	else {
      this.heap.add(this.current);
    }
	//下一个scanner
    this.current = pollRealKV();
    return (this.current != null);
  }
 StoreScanner取数
public synchronized boolean next(List<KeyValue> outResult, int limit) throws IOException {

    ......

    // only call setRow if the row changes; avoids confusing the query matcher
    // if scanning intra-row
	//当前row
    if ((matcher.row == null) || !peeked.matchingRow(matcher.row)) {
      matcher.setRow(peeked.getRow());
    }

    KeyValue kv;
    KeyValue prevKV = null;
    List<KeyValue> results = new ArrayList<KeyValue>();

    // Only do a sanity-check if store and comparator are available.
    KeyValue.KVComparator comparator =
        store != null ? store.getComparator() : null;

	//从heap中取数,直到满足limit,或者scan结束,或者matcher认为不需要再往下扫描,比如column取满数据了
    LOOP: while((kv = this.heap.peek()) != null) {
      // Check that the heap gives us KVs in an increasing order.
      if (prevKV != null && comparator != null
          && comparator.compare(prevKV, kv) > 0) {
        throw new IOException("Key " + prevKV + " followed by a " +
            "smaller key " + kv + " in cf " + store);
      }
      prevKV = kv;
	//matcher决定是接着scan还是结束
      ScanQueryMatcher.MatchCode qcode = matcher.match(kv);
      switch(qcode) {
	//当前keyvalue有效,继续往下
        case INCLUDE:
        case INCLUDE_AND_SEEK_NEXT_ROW:
        case INCLUDE_AND_SEEK_NEXT_COL:
		//添加到result
          Filter f = matcher.getFilter();
          results.add(f == null ? kv : f.transform(kv));
		//需要换行,检查下是否还需要下行数据,对于get请求,这里会直接返回,因为单行数据就够了
          if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_ROW) {
            if (!matcher.moreRowsMayExistAfter(kv)) {
              outResult.addAll(results);
              return false;
            }
            reseek(matcher.getKeyForNextRow(kv));
          } 
		//取下一个column,前一个column取满了	
	else if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_COL) {
            reseek(matcher.getKeyForNextColumn(kv));
          } 
		//当前column,取下一个version	
	else {
            this.heap.next();
          }

          RegionMetricsStorage.incrNumericMetric(metricNameGetSize, kv.getLength());
		//limit满直接返回
          if (limit > 0 && (results.size() == limit)) {
            break LOOP;
          }
          continue;

        case DONE:
          // copy jazz
          outResult.addAll(results);
          return true;

        case DONE_SCAN:
          close();

          // copy jazz
          outResult.addAll(results);

          return false;

       ......
      }
    }

    if (!results.isEmpty()) {
      // copy jazz
      outResult.addAll(results);
      return true;
    }

    // No more keys
    close();
    return false;
  }
 match过程
 public MatchCode match(KeyValue kv) throws IOException {
   	.....
	//和开始row比较
    int ret = this.rowComparator.compareRows(row, 0, row.length,
        bytes, offset, rowLength);
	//如果当前row比开始row大,表示开始row scan结束
    if (ret <= -1) {
      return MatchCode.DONE;
    } 
	//如果当前row小于开始row,往下seek直到我们感兴趣的row
	else if (ret >= 1) {
      // could optimize this, if necessary?
      // Could also be called SEEK_TO_CURRENT_ROW, but this
      // should be rare/never happens.
      return MatchCode.SEEK_NEXT_ROW;
    }
	//行匹配
    // optimize case.
    if (this.stickyNextRow)
        return MatchCode.SEEK_NEXT_ROW;
	//所有column都处理完了,处理下一行
    if (this.columns.done()) {
      stickyNextRow = true;
      return MatchCode.SEEK_NEXT_ROW;
    }

    //Passing rowLength
    offset += rowLength;

    //Skipping family
    byte familyLength = bytes [offset];
    offset += familyLength + 1;

    int qualLength = keyLength + KeyValue.ROW_OFFSET -
      (offset - initialOffset) - KeyValue.TIMESTAMP_TYPE_SIZE;

    long timestamp = kv.getTimestamp();
    // check for early out based on timestamp alone
	//当前keyvalue的timestamp是否已经没用,如果是,则当前column可以不用处理了,因为后续version的数据timestamp只会更小
	//让columnChecker决定是否需要取下一列或下一行
    if (columns.isDone(timestamp)) {
        return columns.getNextRowOrNextColumn(bytes, offset, qualLength);
    }

	.......
	//匹配时间
    int timestampComparison = tr.compare(timestamp);
	//超过了,则跳过当前keyvalue
    if (timestampComparison >= 1) {
      return MatchCode.SKIP;
    } 
	//不够,则当前column可以不用处理了,让columnChecker决定是否需要取下一列或下一行
	else if (timestampComparison <= -1) {
      return columns.getNextRowOrNextColumn(bytes, offset, qualLength);
    }

  	....
	//检查column取数是否已完成,内部会维护一个ColumnCount保留匹配的version数量
    MatchCode colChecker = columns.checkColumn(bytes, offset, qualLength,
        timestamp, type, kv.getMemstoreTS() > maxReadPointToTrackVersions);
    /*
     * According to current implementation, colChecker can only be
     * SEEK_NEXT_COL, SEEK_NEXT_ROW, SKIP or INCLUDE. Therefore, always return
     * the MatchCode. If it is SEEK_NEXT_ROW, also set stickyNextRow.
     */
    if (colChecker == MatchCode.SEEK_NEXT_ROW) {
      stickyNextRow = true;
    }
    return colChecker;

  }
 以指定column方式get的ExplicitColumnTracker为例,看看如何checkColumn,ColumnChecker内部维护一个column列表和一个index指针,代表当前处理的column,按column顺序处理,每个处理完的column会从列表中remove掉,直到column都处理完,则认为该行数据都处理完了
public ScanQueryMatcher.MatchCode checkColumn(byte [] bytes, int offset,
      int length, long timestamp, byte type, boolean ignoreCount) {
    // delete markers should never be passed to an
    // *Explicit*ColumnTracker
    assert !KeyValue.isDelete(type);
    do {
      // No more columns left, we are done with this query
	//所有column已经处理完了,则换行
      if(this.columns.size() == 0) {
        return ScanQueryMatcher.MatchCode.SEEK_NEXT_ROW; // done_row
      }

      // No more columns to match against, done with storefile
	//column处理完,则换行
      if(this.column == null) {
        return ScanQueryMatcher.MatchCode.SEEK_NEXT_ROW; // done_row
      }

      // Compare specific column to current column
	//当前处理column和keyvalue匹配列名
      int ret = Bytes.compareTo(column.getBuffer(), column.getOffset(),
          column.getLength(), bytes, offset, length);

      // Column Matches. If it is not a duplicate key, increment the version count
      // and include.
	//列名匹配,则处理之
      if(ret == 0) {
        if (ignoreCount) return ScanQueryMatcher.MatchCode.INCLUDE;

        //If column matches, check if it is a duplicate timestamp
	//相同timestamp,跳过
        if (sameAsPreviousTS(timestamp)) {
          //If duplicate, skip this Key
          return ScanQueryMatcher.MatchCode.SKIP;
        }
	//count递增
        int count = this.column.increment();
	//version数取够了或者timestamp太小,则该column可以跳过了
        if(count >= maxVersions || (count >= minVersions && isExpired(timestamp))) {
          // Done with versions for this column
          // Note: because we are done with this column, and are removing
          // it from columns, we don't do a ++this.index. The index stays
          // the same but the columns have shifted within the array such
          // that index now points to the next column we are interested in.
		//先删掉
          this.columns.remove(this.index);

          resetTS();
		//删完之后比较数量,如果和index一致,则认为所有column都已处理完成
          if (this.columns.size() == this.index) {
            // We have served all the requested columns.
            this.column = null;
            return ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_ROW;
          } 
		//给下一个column处理做准备	
	else {
            // We are done with current column; advance to next column
            // of interest.
            this.column = this.columns.get(this.index);
            return ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_COL;
          }
        } else {
          setTS(timestamp);
        }
	//数量还不够,继续往下scan
        return ScanQueryMatcher.MatchCode.INCLUDE;
      }
	//当前keyvalue和column不匹配
      resetTS();
	//当前keyvalue的column小于希望的column,跳过读下一个column
      if (ret > 0) {
        // The current KV is smaller than the column the ExplicitColumnTracker
        // is interested in, so seek to that column of interest.
        return ScanQueryMatcher.MatchCode.SEEK_NEXT_COL;
      }

      // The current KV is bigger than the column the ExplicitColumnTracker
      // is interested in. That means there is no more data for the column
      // of interest. Advance the ExplicitColumnTracker state to next
      // column of interest, and check again.
	//当前keyvalue的column大于希望的column,则继续处理下一个column,不理解
      if (ret <= -1) {
        if (++this.index >= this.columns.size()) {
          // No more to match, do not include, done with this row.
          return ScanQueryMatcher.MatchCode.SEEK_NEXT_ROW; // done_row
        }
        // This is the recursive case.
        this.column = this.columns.get(this.index);
      }
    } while(true);
  }
 KeyValueHeap迭代,保证keyvalue是按顺序scan的,有可能多个scanner之间会来回切换
public KeyValue next()  throws IOException {
    if(this.current == null) {
      return null;
    }
	//当前值
    KeyValue kvReturn = this.current.next();
	//当前scanner的下一个keyvalue
    KeyValue kvNext = this.current.peek();
	//当前scanner结束,换一个scanner
    if (kvNext == null) {
      this.current.close();
      this.current = pollRealKV();
    } 
	//当前scanner的keyvalue再和其他scanner的peek值比较,如果大于则切换到其他scanner,保证keyvalue是从小到大排序
	else {
      KeyValueScanner topScanner = this.heap.peek();
      if (topScanner == null ||
          this.comparator.compare(kvNext, topScanner.peek()) >= 0) {
        this.heap.add(this.current);
        this.current = pollRealKV();
      }
    }
    return kvReturn;
  }
 以MemStoreScanner来看看next取数,在keset和snapshot中切换
    public synchronized KeyValue next() {
      if (theNext == null) {
          return null;
      }
	//老的值
      final KeyValue ret = theNext;

      // Advance one of the iterators
	//从kvset中迭代
      if (theNext == kvsetNextRow) {
        kvsetNextRow = getNext(kvsetIt);
      } 
	//从snapshot迭代
	else {
        snapshotNextRow = getNext(snapshotIt);
      }

      // Calculate the next value
	//取小的那个
      theNext = getLowest(kvsetNextRow, snapshotNextRow);

      //long readpoint = ReadWriteConsistencyControl.getThreadReadPoint();
      //DebugPrint.println(" MS@" + hashCode() + " next: " + theNext + " next_next: " +
      //    getLowest() + " threadpoint=" + readpoint);
      return ret;
    }
 以上就是Get的过程,主要步骤
1.scanner组装
2.迭代时,多个scanner之间需要保证keyvalue对象按顺序scan出来,核心是PriorityQueue+KVScannerComparator
3.ScanQueryMatcher来决定当前keyvalue对象是否可用,下一个请求如何处理,跳列还是跳行
4.ColumnChecker来决定当前column是否已经处理完毕,下一个请求如何处理,跳列还是跳行

 

  • 大小: 212.7 KB
分享到:
评论

相关推荐

    kettle集群搭建以及使用kettle将mysql数据转换为Hbase数据

    需要注意的是,这里需要配置好HBase的相关参数,如HBase表的名称、列族等信息。 5. **运行作业**:设置作业参数,运行作业将数据从MySQL迁移到HBase。 #### 四、总结 通过本文的介绍,我们了解了Kettle集群的基本...

    hbase-hbck2-1.1.0-SNAPSHOT.jar

    hbase-hbck2-1.1.0-SNAPSHOT.jar

    HBASE API

    HBase的查询主要通过`Get`对象实现,`Get`对象可以指定行键和列过滤条件。调用`HTable`的`get()`方法,传入`Get`对象,即可获取对应的数据。对于更复杂的查询需求,如范围扫描或使用过滤器,可以使用`Scan`对象。 5...

    Hbase shell及常用命令

    HBase get命令用于从表中获取数据。例如,获取Student表中的一条数据: get 'Student', '0001' HBase scan命令:查询全表数据 --------------------------- HBase scan命令用于查询全表数据。例如,查询Student表...

    HbaseTemplate 操作hbase

    HbaseTemplate的`get`方法接受RowKey作为参数,返回一个Result对象,其中包含了该行的所有列族和列的信息。 4. **执行(execute)操作**:`execute`方法是一个更为灵活的接口,允许我们传递一个HBase操作的回调函数...

    Hbase调用JavaAPI实现批量导入操作.docx

    创建 Hbase 表需要使用 HBaseAdmin 类,通过 getConfiguration() 方法获取 Hbase 配置信息,然后使用 createTable() 方法创建表结构。代码如下: ```java public static void create(String tableName, String ...

    scala API 操作hbase表

    import org.apache.hadoop.hbase.client.Get import org.apache.hadoop.hbase.util.Bytes ``` 2. 配置HBase连接: 创建一个`Configuration`对象并加载HBase的配置信息: ```scala val conf = ...

    java操作Hbase之从Hbase中读取数据写入hdfs中源码

    import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Table; import org.apache.hadoop.hbase.util.Bytes; public class ...

    hbase-2.4.17-bin 安装包

    3. 查询数据:`get '表名', '行键'`获取整行数据,或`scan '表名'`进行全表扫描,可以指定过滤器等条件。 4. 删除数据:`delete '表名', '行键', '列族:列限定符', [时间戳]`删除特定单元格,可选时间戳指定版本。 ...

    hbase 的java代码 集合 hbase 0.96

    在Java中,我们通过HBase客户端API与HBase交互,这些API包括了`HBaseAdmin`、`HTable`、`Put`、`Get`、`Scan`等核心类。 1. **连接HBase**:在Java代码中,我们使用`HBaseConfiguration.create()`来创建一个配置...

    Hbase实验报告.pdf

    查询HBase中的数据通常使用`get`命令。例如,查询“zhangsan”的地址: ```shell get 'student', 'zhangsan', 'info:address' ``` 查询“lisi”的“Hadoop”成绩: ```shell get 'student', 'lisi', 'info:Hadoop' `...

    hbase资料api

    HBase数据查询API HBase是一种分布式的、面向列的NoSQL数据库,主要应用于存储大量的半结构化数据。HBase提供了多种查询方式,包括单条查询和批量查询。 单条查询 单条查询是通过rowkey在table中查询某一行的数据...

    hbase数据可视化系统

    3. 查询功能实现:根据RowKey查询数据是HBase的基本操作,通过输入RowKey,后台执行get操作获取对应行数据,并展示在页面上。 4. 表管理:支持HBase的建表和删除操作,这需要调用HBase的Admin API,完成表的创建、...

    HBase使用的jar包

    1. **HBase客户端库**:这是与HBase交互的基础,包含了HBase的API,如`org.apache.hadoop.hbase.client.Connection`和`org.apache.hadoop.hbase.client.Table`等,用于创建连接、打开表、执行Get、Put、Scan等操作。...

    hbase分页查询实现.pdf

    作者使用了getTable()方法来获取表对象,并传入了表名作为参数。 知识点4:字节数组的转换 在HBase中,需要将字符串转换为字节数组。作者使用了getBytes()方法来将字符串转换为字节数组。 知识点5:分页查询的...

    Hbase笔记 —— 利用JavaAPI的方式操作Hbase数据库(往hbase的表中批量插入数据).pdf

    在本文档中,我们将深入探讨如何使用Java API与HBase数据库进行交互,特别是关于如何创建表、修改表结构以及批量插入数据。HBase是Apache的一个分布式、可扩展的大数据存储系统,它基于谷歌的Bigtable设计,适用于...

    hbase的shell操作

    根据提供的文件信息,本文将详细介绍HBase的Shell操作及其应用场景,包括如何创建表、插入数据、查询数据等关键操作。 ### HBase Shell简介 HBase Shell是HBase提供的一种交互式命令行工具,用于执行HBase操作。它...

    hbase java api 访问 查询、分页

    在HBase这个分布式列式数据库中,Java API是开发者常用的一种接口来操作HBase,包括创建表、插入数据、查询数据以及实现分页等操作。本文将深入探讨如何使用HBase Java API进行数据访问和分页查询。 首先,我们要...

    hbase 数据库

    hbase(main):003:0&gt; get 'my_table', 'row1' ``` 9. **监控与维护**:可以使用HBase提供的JMX监控工具,或者集成Zabbix、Prometheus等第三方监控系统来监控HBase的性能和稳定性。 10. **扩展性**:随着数据的...

Global site tag (gtag.js) - Google Analytics