`

堆排序

阅读更多

堆排序是利用堆的性质进行的一种选择排序。下面先讨论一下堆。

1. 

堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:

Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]

或者

Key[i]>=Key[2i+1]&&key>=key[2i+2]

即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。

堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足 Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。

 

2.堆排序的思想

利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。

其基本思想为(大顶堆):

      1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;

      2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n]; 

      3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

      操作过程如下:

      1)初始化堆:将R[1..n]构造为堆;

      2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。

      因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。

 

3.举例说明:

      给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。

      首先根据该数组元素构建一个完全二叉树,得到


      

然后需要构造初始堆,则从最后一个非叶节点开始调整,调整过程如下:



      20和16交换后导致16不满足堆的性质,因此需重新调整


      
       这样就得到了初始堆。

      即每次调整都是从父节点、左孩子节点、右孩子节点三者中选择最大者跟父节点进行交换(交换之后可能造成被交换的孩子节点不满足堆的性质,因此每次交换之后要重新对被交换的孩子节点进行调整)。

      有了初始堆之后就可以进行排序了。


      
      此时3位于堆顶不满堆的性质,则需调整继续调整


      
       依次调整如下:

这样整个区间便已经有序了。

从上述过程可知,堆排序其实也是一种选择排序,是一种树形选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的特点保存了部分前面的比较结果,因此可以减少比较次数。对于n个关键字序列,最坏情况下每个节点需比较log2(n)次,因此其最坏情况下时间复杂度为nlogn。堆排序为不稳定排序,不适合记录较少的排序

public class HeapSort {
	
	/**
	 * 构建大顶堆
	 * @param list:待排序数组
	 * @param size:待排序数据长度
	 * @param i:待移动的节点序号
	 */
	private void heapAdjust(int[] list,int size,int i)
	{
		int lchild=2*i;       //i的左孩子节点序号 
	    int rchild=2*i+1;     //i的右孩子节点序号 
	    int max=i;            //临时变量 
	    if(i<=size/2)         //如果i是叶节点就不用进行调整 
	    {
	        if(lchild<=size&&list[lchild]>list[max])
	        {
	            max=lchild;
	        }    
	        if(rchild<=size&&list[rchild]>list[max])
	        {
	            max=rchild;
	        }
	        if(max!=i)
	        {
	        	int temp = list[i];
	        	list[i] = list[max];
	        	list[max] = temp;
	            
	            //避免调整之后以max为父节点的子树不是堆 
	            heapAdjust(list,size,max);
	        }
	    }  
	}
	
	/**
	 * 构建堆
	 * @param list:待排序数组
	 * @param size:待排序数据长度
	 */
	private void buildHeap(int[] list,int size)
	{
		int i;
		//非叶节点最大序号值为size/2 
	    for(i=size/2;i>=0;i--)
	    {
	    	heapAdjust(list,size,i);    
	    }   
	}

	/**
	 * 堆排序
	 * @param list:待排序数组
	 * @param size:待排序数据长度
	 */
	public void heapSort(int[] list, int size) {
		int i;
		buildHeap(list,size);
		
	    for(i=size;i>=0;i--)
	    {
	    	//交换堆顶和最后一个元素,即每次将剩余元素中的最大者放到最后面 
	    	int temp = list[0];
        	list[0] = list[i];
        	list[i] = temp;
        	
        	//将余下元素重新建立为大顶堆 
        	buildHeap(list,i-1);       
	    }
	}

	public static void main(String[] args) {
		int list[] = {-1,4,9,5,16,7,3,20,17,8,2,0 };
		new HeapSort().heapSort(list, list.length-1);
		
		for (int b :list) {
			System.out.print(b + " ");
		}
	}
}

 

 

  • 大小: 4.9 KB
  • 大小: 13.7 KB
  • 大小: 5 KB
  • 大小: 5 KB
  • 大小: 5.1 KB
  • 大小: 42.4 KB
分享到:
评论

相关推荐

    堆排序算法源代码

    堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在本场景中,我们关注的是堆排序的源代码,它适用于openSUSE 11.4操作系统,并且是使用GCC version 4.5.1编译器编译的。在这个名为"sort...

    排序算法编程 堆排序 快速排序

    本主题将深入探讨四种常见的排序算法:堆排序、快速排序以及两种未在标题中明确提到但同样重要的排序方法——基数排序和计数排序。 首先,让我们详细了解一下堆排序。堆排序是一种基于比较的排序算法,利用了数据...

    堆排序的c++实现代码

    堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在大顶堆中,父节点的值总是大于或等于其子节点;而在小顶堆中,父节点的值总是小于或等于其子节点。在C++中,我们可以利用STL中的`...

    算法设计实验报告堆排序代码

    【堆排序算法详解】 堆排序是一种高效的比较排序算法,其主要思想是利用堆这种数据结构进行数据的排序。堆是一个近似完全二叉树的结构,同时满足堆的性质:即父节点的键值总是大于或等于(在最大堆中)或小于或等于...

    堆排序 减治法——C++代码

    堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在计算机科学中,堆通常被理解为一个完全二叉树,其中每个父节点的值都大于或等于(大顶堆)或小于或等于(小顶堆)其子节点的值。堆排序算法...

    学生成绩管理中实现堆排序

    在这个名为“学生成绩管理中实现堆排序”的项目中,我们看到一个C++编写的学生成绩管理系统,它使用了堆排序方法来管理并排序学生的成绩。 首先,让我们详细了解一下堆。堆通常是一个完全二叉树,可以分为最大堆和...

    C++语言的算法实现包括插入排序冒泡排序堆排序快速排序

    本文将深入探讨四种在C++中实现的常见排序算法:插入排序、冒泡排序、堆排序和快速排序。这些算法各有特点,适用于不同的场景,理解并掌握它们对于提升编程能力至关重要。 1. **插入排序**: 插入排序是一种简单的...

    数据结构课程设计 实验报告——堆排序

    ### 数据结构课程设计实验报告——堆排序 #### 一、堆排序概述 堆排序是一种基于树形选择的排序算法,其核心在于利用完全二叉树的性质进行元素的选择与排序。在排序过程中,将待排序的数据集合视为一颗完全二叉树...

    数据结构排序 堆排序

    数据结构排序 堆排序 堆排序是一种常用的排序算法,它使用大堆进行排序。下面是堆排序的详细知识点说明: 堆排序定义 堆排序是一种比较排序算法,它使用大堆(max heap)来对数组进行排序。堆排序的时间复杂度为O...

    C++实现堆排序

    1、 实现堆排序算法。 2、 理论分析并实验验证堆排序算法的时间复杂度。

    堆排序算法实现堆排序

    堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆结构来实现数据的排序。在此,我们将深入探讨堆排序的基本概念、原理以及如何通过编程实现。 一、堆排序的概念 堆是一个近似完全二叉树的结构,...

    ACM准备模板——堆排序模板

    在ACM(国际大学生程序设计竞赛)中,堆排序是一种常用且高效的排序算法,对于解决时间限制严格的在线问题尤其有用。本篇文章将深入探讨堆排序的原理、实现以及如何将其应用到ACM竞赛中。 首先,堆是一个近似完全...

    堆排序 里面有关于堆排序的练习台

    堆排序是一种基于比较的排序算法,它通过构建和调整二叉堆来实现数据的排序。在二叉堆中,每个父节点的值都大于或等于其子节点的值,这样的堆被称为最大堆。堆排序的基本步骤包括建堆、交换根节点与最后一个元素、...

    数据结构堆排序

    堆排序是一种基于比较的排序算法,它的效率高且实现简单。在本文中,我们将深入探讨堆排序的原理,以及如何在实际编程中实现它。 首先,我们要理解什么是堆。堆是一种特殊的树形数据结构,每个节点都有一个值,并且...

    堆排序算法详细配图讲解

    堆排序是一种基于比较的排序算法,它利用了完全二叉树的数据结构特性,通过堆的性质进行元素的排序。在堆排序中,堆被定义为满足以下性质的完全二叉树:对于每个非叶子节点,其值大于或等于(在大根堆中)或小于或...

    《快速排序 直接插入排序 堆排序 希尔排序 选择排序:五种排序》

    (1) 完成5种常用内部排序算法的演示,5种排序算法为:快速排序,直接插入排序,选择排序,堆排序,希尔排序; (2) 待排序元素为整数,排序序列存储在数据文件中,要求排序元素不少于30个; (3) 演示程序开始,...

    各种排序的C++算法实现(插入排序、合并排序、堆排序、快速排序)

    全面的排序算法实现,包括插入排序、合并排序、堆排序、快速排序。 堆排序:HeapSort 讲解详见http://blog.csdn.net/fly_yr/article/details/8550701 插入排序:InSertion_Sort 讲解详见...

    堆排序C语言实现

    堆排序是一种基于比较的排序算法,它通过构造一个大顶堆或小顶堆来实现排序。在计算机科学中,堆通常被理解为一种特殊的完全二叉树,其中每个父节点的值都大于或等于(对于大顶堆)或小于或等于(对于小顶堆)其子...

    直接插入排序 冒泡排序 快速排序 直接选择排序 堆排序 二路归并排序 C#源代码

    直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序和二路归并排序是计算机科学中经典的排序算法,它们在数据处理和算法学习中占有重要地位。这些排序算法各有特点,适用场景不同,下面将逐一详细介绍,并结合...

    堆排序算法实例

    堆排序是一种基于比较的排序算法,它通过构造一个近似完全二叉树的堆数据结构来实现排序。在计算机科学中,堆是一个可以被看作是一棵树形结构的数据集合,其中每个父节点的值都大于或等于其子节点的值(大顶堆)或...

Global site tag (gtag.js) - Google Analytics