`
longzhun
  • 浏览: 371647 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

ReentrantLock(一)

 
阅读更多

synchronized原语和ReentrantLock在一般情况下没有什么区别,但是在非常复杂的同步应用中,请考虑使用ReentrantLock,特别是遇到下面2种需求的时候。 
1.某个线程在等待一个锁的控制权的这段时间需要中断 
2.需要分开处理一些wait-notify,ReentrantLock里面的Condition应用,能够控制notify哪个线程 
3.具有公平锁功能,每个到来的线程都将排队等候 
下面细细道来…… 

先 说第一种情况,ReentrantLock的lock机制有2种,忽略中断锁和响应中断锁,这给我们带来了很大的灵活性。比如:如果A、B2个线程去竞争 锁,A线程得到了锁,B线程等待,但是A线程这个时候实在有太多事情要处理,就是一直不返回,B线程可能就会等不及了,想中断自己,不再等待这个锁了,转 而处理其他事情。这个时候ReentrantLock就提供了2种机制,第一,B线程中断自己(或者别的线程中断它),但是ReentrantLock不 去响应,继续让B线程等待,你再怎么中断,我全当耳边风(synchronized原语就是如此);第二,B线程中断自己(或者别的线程中断 它),ReentrantLock处理了这个中断,并且不再等待这个锁的到来,完全放弃。(如果你没有了解java的中断机制,请参考下相关资料,再回头 看这篇文章,80%的人根本没有真正理解什么是java的中断,呵呵) 

这里来做个试验,首先搞一个Buffer类,它有读操作和写操作,为了不读到脏数据,写和读都需要加锁,我们先用synchronized原语来加锁,如下: 

Java代码 
public class Buffer {    
     
    private Object lock;    
     
    public Buffer() {    
        lock = this;    
    }    
     
    public void write() {    
        synchronized (lock) {    
            long startTime = System.currentTimeMillis();    
            System.out.println("开始往这个buff写入数据…");    
            for (;;)// 模拟要处理很长时间    
            {    
                if (System.currentTimeMillis()    
                        - startTime > Integer.MAX_VALUE)    
                    break;    
            }    
            System.out.println("终于写完了");    
        }    
    }    
     
    public void read() {    
        synchronized (lock) {    
            System.out.println("从这个buff读数据");    
        }    
    }    
}   


接着,我们来定义2个线程,一个线程去写,一个线程去读。 

Java代码 
public class Writer extends Thread {    
     
    private Buffer buff;    
     
    public Writer(Buffer buff) {    
        this.buff = buff;    
    }    
     
    @Override    
    public void run() {    
        buff.write();    
    }    
     
}    
     
public class Reader extends Thread {    
     
    private Buffer buff;    
     
    public Reader(Buffer buff) {    
        this.buff = buff;    
    }    
     
    @Override    
    public void run() {    
     
        buff.read();//这里估计会一直阻塞    
     
        System.out.println("读结束");    
     
    }    
     
}   

好了,写一个Main来试验下,我们有意先去“写”,然后让“读”等待,“写”的时间是无穷的,就看“读”能不能放弃了。 

Java代码 
public class Test {    
    public static void main(String[] args) {    
        Buffer buff = new Buffer();    
     
        final Writer writer = new Writer(buff);    
        final Reader reader = new Reader(buff);    
     
        writer.start();    
        reader.start();    
     
        new Thread(new Runnable() {    
     
            @Override    
            public void run() {    
                long start = System.currentTimeMillis();    
                for (;;) {    
                    //等5秒钟去中断读    
                    if (System.currentTimeMillis()    
                            - start > 5000) {    
                        System.out.println("不等了,尝试中断");    
                        reader.interrupt();    
                        break;    
                    }    
     
                }    
     
            }    
        }).start();    
     
    }    
}   


我 们期待“读”这个线程能退出等待锁,可是事与愿违,一旦读这个线程发现自己得不到锁,就一直开始等待了,就算它等死,也得不到锁,因为写线程要21亿秒才 能完成 T_T ,即使我们中断它,它都不来响应下,看来真的要等死了。这个时候,ReentrantLock给了一种机制让我们来响应中断,让“读”能伸能屈,勇敢放弃 对这个锁的等待。我们来改写Buffer这个类,就叫BufferInterruptibly吧,可中断缓存。 

Java代码 
import java.util.concurrent.locks.ReentrantLock;    
     
public class BufferInterruptibly {    
     
    private ReentrantLock lock = new ReentrantLock();    
     
    public void write() {    
        lock.lock();    
        try {    
            long startTime = System.currentTimeMillis();    
            System.out.println("开始往这个buff写入数据…");    
            for (;;)// 模拟要处理很长时间    
            {    
                if (System.currentTimeMillis()    
                        - startTime > Integer.MAX_VALUE)    
                    break;    
            }    
            System.out.println("终于写完了");    
        } finally {    
            lock.unlock();    
        }    
    }    
     
    public void read() throws InterruptedException {    
        lock.lockInterruptibly();// 注意这里,可以响应中断    
        try {    
            System.out.println("从这个buff读数据");    
        } finally {    
            lock.unlock();    
        }    
    }    
     
}   

当然,要对reader和writer做响应的修改 

Java代码 
public class Reader extends Thread {    
     
    private BufferInterruptibly buff;    
     
    public Reader(BufferInterruptibly buff) {    
        this.buff = buff;    
    }    
     
    @Override    
    public void run() {    
     
        try {    
            buff.read();//可以收到中断的异常,从而有效退出    
        } catch (InterruptedException e) {    
            System.out.println("我不读了");    
        }    
           
        System.out.println("读结束");    
     
    }    
     
}    
     
/**   
* Writer倒不用怎么改动   
*/    
public class Writer extends Thread {    
     
    private BufferInterruptibly buff;    
     
    public Writer(BufferInterruptibly buff) {    
        this.buff = buff;    
    }    
     
    @Override    
    public void run() {    
        buff.write();    
    }    
     
}    
     
public class Test {    
    public static void main(String[] args) {    
        BufferInterruptibly buff = new BufferInterruptibly();    
     
        final Writer writer = new Writer(buff);    
        final Reader reader = new Reader(buff);    
     
        writer.start();    
        reader.start();    
     
        new Thread(new Runnable() {    
     
            @Override    
            public void run() {    
                long start = System.currentTimeMillis();    
                for (;;) {    
                    if (System.currentTimeMillis()    
                            - start > 5000) {    
                        System.out.println("不等了,尝试中断");    
                        reader.interrupt();    
                        break;    
                    }    
     
                }    
     
            }    
        }).start();    
     
    }    
}   

这次“读”线程接收到了lock.lockInterruptibly()中断,并且有效处理了这个“异常”。好奇的读者,肯定要探个究竟,为什么ReentrantLock能做到这点,接下来请查看ReentrantLock(二)

分享到:
评论

相关推荐

    Java并发之ReentrantLock类源码解析

    ReentrantLock是Java并发包中的一种同步工具,它可以实现可重入锁的功能。ReentrantLock类的源码分析对理解Java并发机制非常重要。本文将对ReentrantLock类的源码进行详细分析,涵盖ReentrantLock的继承关系、构造...

    java ReentrantLock详解.docx

    `ReentrantLock`是Java并发编程中的一种高级锁机制,它是`java.util.concurrent.locks`包中的类,提供了比`synchronized`关键字更丰富的功能和更细粒度的控制。相较于`synchronized`,`ReentrantLock`的主要优势在于...

    ReentrantLock解析

    在Java并发编程中,ReentrantLock是JDK提供的一个可重入互斥锁,它是java.util.concurrent.locks包下的核心类。与synchronized关键字相比,ReentrantLock提供了更高的灵活性,如尝试加锁、定时加锁和公平锁等功能。...

    Lock、Synchoronized和ReentrantLock的使用

    * ReentrantLock:在资源竞争激烈的情况下,ReentrantLock 是一个很好的选择。 * Atomic:在激烈竞争的情况下,Atomic 的性能可以维持常态。 六、ReentrantLock 的实现 ReentrantLock 类 java.util.concurrent....

    Java中ReentrantLock的使用.docx

    Java中的ReentrantLock是线程安全编程中的一种高级锁机制,它属于Lock接口的一个实现,提供了比synchronized更丰富的功能和更高的灵活性。ReentrantLock的名字来源于它的可重入性,这意味着一个线程可以多次获取同一...

    ReentrantLock源码的使用问题详解.docx

    ReentrantLock,可重入锁,是Java并发编程中一个重要的锁实现,它提供了比synchronized更高级别的控制能力,包括公平性和非公平性选择。本文将深入探讨ReentrantLock的原理,特别是其公平锁与非公平锁的概念,以及...

    ReentrantLock与synchronized

    - 分离锁和条件:`ReentrantLock`有`Condition`接口,可以创建多个条件,每个条件对应一个等待队列,提高了线程间的协作能力。 4. **灵活性**: - 更好的控制粒度,可以只锁定需要的部分代码,提高并发效率。 - ...

    ReentrantLock源码分析

    #### 一、ReentrantLock简介 ReentrantLock是一个基于`AbstractQueuedSynchronizer`(AQS)实现的高级锁工具类。与传统的synchronized关键字相比,ReentrantLock提供了更多控制手段,比如可以指定是否公平锁、支持中断...

    Java多线程之ReentrantLock与Condition - 平凡希 - 博客园1

    Java中的`ReentrantLock`是Java并发包`java.util.concurrent.locks`中的一个高级锁机制,它是可重入的互斥锁,具有与`synchronized`关键字相似的同步性,但提供了更多的灵活性和控制功能。本篇文章将深入探讨`...

    ReentrantLock 实现原理 1

    ReentrantLock 的实现原理基于 AQS(AbstractQueuedSynchronizer),是一个重入锁,允许一个线程反复地获取锁而不会出现自己阻塞自己的情况。 ReentrantLock 的构造方法可以指定锁的类型,包括公平锁和非公平锁。...

    ReentrantLock代码剖析之ReentrantLock_lock

    `ReentrantLock`是Java并发编程中非常重要的一种锁,它提供了比`synchronized`关键字更细粒度的控制,并且在高竞争条件下的性能更优。在本文中,我们将深入分析`ReentrantLock`的`lock()`方法,理解其内部机制,包括...

    locks框架_ReentrantLock.pdf

    ReentrantLock作为Lock接口的一个实现,是这个框架中的核心组件,尤其值得关注。它的主要特点是可重入性,这意味着一个线程可以多次获取同一锁,从而避免了死锁的风险。 ReentrantLock内部依赖于...

    ReentrantLock 与 synchronized 简介

    - `ReentrantLock`支持重入特性,即允许同一个线程多次获取同一把锁,这与`synchronized`的行为一致。 #### 四、总结 在选择使用`synchronized`还是`ReentrantLock`时,应根据具体的应用场景来决定: - 如果需要...

    使用ReentrantLock和Lambda表达式让同步更

    在高级并发编程中,`ReentrantLock`是一个强大的工具,相较于内置的`synchronized`关键字,它提供了更多的灵活性和控制。本篇文章将深入探讨`ReentrantLock`的使用以及如何结合Lambda表达式来优化同步代码。 `...

    Java多线程ReentrantLock1

    Java的ReentrantLock是Java并发编程中非常重要的一个同步机制,它是JDK 5.0引入的并发包`java.util.concurrent.locks`中的一个高级锁,提供了比synchronized更细粒度的控制,同时具备更高的灵活性和性能。...

    教你完全理解ReentrantLock重入锁

    ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。在java关键字synchronized隐式支持重...

    简单聊聊Synchronized和ReentrantLock锁.docx

    相比之下,ReentrantLock(可重入锁)是Java并发包java.util.concurrent.locks中的一个类,提供了更细粒度的锁控制。ReentrantLock允许显式获取和释放锁,并且支持更丰富的锁原语,如公平锁、非公平锁、可中断锁、...

    ReentrantLock流程浅析

    ReentrantLock的实现基于AbstractQueuedSynchronizer(AQS),AQS是一个用于构建锁和同步器的框架,它维护了一个FIFO(先进先出)的等待队列。ReentrantLock中的Sync类是AQS的子类,分为公平锁FairSync和非公平锁...

    ReentrantLock实现原理详解

    - **ReentrantLock**:是Lock接口的实现,具备可重入特性,即同一线程可多次获取同一把锁,这对于递归或嵌套调用非常有用。 3. **AQS(AbstractQueuedSynchronizer)** - **AQS简介**:AQS是实现锁和同步器的...

    Java 多线程与并发(11-26)-JUC锁- ReentrantLock详解.pdf

    Java中的ReentrantLock是Java并发包(java.util.concurrent.locks)中的一个高级锁,它是可重入的,意味着一个线程可以多次获取同一锁。在深入ReentrantLock之前,我们首先需要了解Java并发编程的基础,特别是Java...

Global site tag (gtag.js) - Google Analytics