数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。
数据仓库是决策支持系统(DSS)和联机分析应用数据源的结构化数据环境。
数据仓库 研究、解决从数据库中获取信息的问题。
特征:
面向主题 subject oriented
继承性 integrated
稳定性 non_volatie
时变性 time_variant 反映历史变化
数据仓库包含:数据仓库技术、联机分析处理技术、数据挖掘技术。
下面是百度百科给出的描述:
定义:
数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。
数据仓库 ,由数据仓库之父W.H.Inmon于1990年提出,主要功能乃是将组织透过资讯系统之联机交易处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法如线上分析处理(OLAP)、数据挖掘(Data Mining)之进行,并进而支持如决策支持系统(DSS)、主管资讯系统(EIS)之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外在环境变动,帮助建构商业智能(BI)。
数据仓库之父William H. Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
1、数据仓库是面向主题的;操作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出
数据仓库的核心工具
来,进行加工与集成,统一与综合之后才能进入数据仓库;
3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询;
4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求。稳定的数据以只读格式保存,且不随时间改变。
5、汇总的。操作性数据映射成决策可用的格式。
6、大容量。时间序列数据集合通常都非常大。
7、非规范化的。Dw数据可以是而且经常是冗余的。
8、元数据。将描述数据的数据保存起来。
9、数据源。数据来自内部的和外部的非集成操作系统。
数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它并不是所谓的“大型数据库”。数据仓库的方案建设的目的,是为前端查询和分析作为基础,由于有较大的冗余,所以需要的存储也较大。为了更好地为前端应用服务,数据仓库往往有如下几点特点:
1.效率足够高。数据仓库的分析数据一般分为日、周、月、季、年等,可以看出,日为周期的数据要求的效率最高,要求24小时甚至12小时内,客户能看到昨天的数据分析。由于有的企业每日的数据量很大,设计不好
的数据仓库经常会出问题,延迟1-3日才能给出数据,显然不行的。
2.数据质量。数据仓库所提供的各种信息,肯定要准确的数据,但由于数据仓库流程通常分为多个步骤,包括数据清洗,装载,查询,展现等等,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
3.扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,未来不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。
从上面的介绍中可以看出,数据仓库技术可以将企业多年积累的数据唤醒,不仅为企业管理好这些海量数据,而且挖掘数据潜在的价值,从而成为通信企业运营维护系统的亮点之一。正因为如此,
广义的说,基于数据仓库的决策支持系统由三个部件组成:数据仓库技术,联机分析处理技术和数据挖掘技术,其中数据仓库技术是系统的核心,在这个系列后面的文章里,将围绕数据仓库技术,介绍现代数据仓库的主要技术和数据处理的主要步骤,讨论在通信运营维护系统中如何使用这些技术为运营维护带来帮助。
面向主题
操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。主题是与传统数据库的面向应用相对应的,是一个抽象概念,是在较高层次上将企业信息系统中的数据综合、归类并进行分析利用的抽象。每一个主题对应一个宏观的分析领域。数据仓库排除对于决策无用的数据,提供特定主题的简明视图。
集成的
数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
相对稳定的
数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
反映历史变化
数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
============================================================================
实现方式
数据仓库是一个过程而不是一个项目。
数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。
从功能结构划分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分。
企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。
体系结构
数据源
是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等等;
数据的存储与管理
是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。
OLAP服务器
对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP(关系型在线分析处理)、MOLAP(多维在线分析处理)和HOLAP(混合型线上分析处理)。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。
前端工具
主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以数据挖掘及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。
组成
数据抽取工具
把数据从各种各样的存储方式中拿出来,进行必要的转化、整理,再存放到数据仓库内。对各种不同数据存储方式的访问能力是数据抽取工具的关键,应能生成COBOL程序、MVS作业控制语言(JCL)、UNIX脚本、和SQL语句等,以访问不同的数据。数据转换都包括,删除对决策应用没有意义的数据段;转换到统一的数据名称和定义;计算统计和衍生数据;给缺值数据赋给缺省值;把不同的数据定义方式统一。
数据仓库数据库
是整个数据仓库环境的核心,是数据存放的地方和提供对数据检索的支持。相对于操纵型数据库来说其
IBM数据仓库解决方案产品组成
突出的特点是对海量数据的支持和快速的检索技术。
元数据
元数据是描述数据仓库内数据的结构和建立方法的数据。可将其按用途的不同分为两类,技术元数据和商业元数据。
技术元数据是数据仓库的设计和管理人员用于开发和日常管理数据仓库使用的数据。包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。
商业元数据从商业业务的角度描述了数据仓库中的数据。包括:业务主题的描述,包含的数据、查询、报表;
元数据为访问数据仓库提供了一个信息目录(informationdirectory),这个目录全面描述了数据仓库中都有什么数据、这些数据怎么得到的、和怎么访问这些数据。是数据仓库运行和维护的中心,数据仓库服务器利用他来存贮和更新数据,用户通过他来了解和访问数据。
数据集市
为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subjectarea)。在数据仓库的实施过程中往往可以从一个部门的数据集市着手,以后再用几个数据集市组成一个完整的数据仓库。需要注意的就是在实施不同的数据集市时,同一含义的字段定义一定要相容,这样在以后实施数据仓库时才不会造成大麻烦。
数据仓库管理
安全和特权管理;跟踪数据的更新;数据质量检查;管理和更新元数据;审计和报告数据仓库的使用和状态;删除数据;复制、分割和分发数据;备份和恢复;存储管理。
信息发布系统
把数据仓库中的数据或其他相关的数据发送给不同的地点或用户。基于Web的信息发布系统是对付多用户访问的最有效方法。
访问工具
为用户访问数据仓库提供手段。有数据查询和报表工具;应用开发工具;管理信息系统(EIS)工具;在线分析(OLAP)工具;数据挖掘工具。
相关推荐
### 数据仓库入门教程知识点概述 #### 一、数据仓库基础知识 **1.1 数据仓库** 数据仓库是一个用于存储历史数据的系统,旨在为企业提供决策支持。它是一个面向主题的、集成的、非易失的、随时间变化的数据集合。...
数据仓库入门经典教程,数据仓库入门经典教程数据仓库入门经典教程
首先,我们从“DB2数据仓库入门”这一主题入手,数据仓库是一个专门设计用于数据分析的系统,它整合了来自多个源的大量历史数据,提供了一种高效的方式进行数据挖掘和业务智能分析。DB2作为数据仓库的基石,以其高...
### 经典的数据仓库入门学习资料 #### 一、决策支持系统的发展背景 信息系统领域作为一个相对较新的领域,其发展历程与其他历史悠久的技术领域相比显得相当年轻。从古埃及的象形文字到罗马的城市规划,人类文明中...
刚进入云计算大数据领域,从初级开始,做大数据ETL开发,那么数据仓库这一块,应该是入门的开始一项技术
1.12 监控数据仓库环境 17 1.13 小结 19 第2章 数据仓库环境 20 2.1 数据仓库的结构 22 2.2 面向主题 23 2.3 第1天到第n天的现象 26 2.4 粒度 28 2.4.1 粒度的一个例子 29 2.4.2 粒度的双重级别 31 2.5 分割问题 34 ...
### 数据仓库入门教程知识点概述 #### 一、数据仓库基础 **1.1 数据仓库** 数据仓库是一个用于存储历史数据的系统,旨在为企业提供决策支持。它是一个面向主题的、集成的、非易失的、随时间变化的数据集合。与...
根据《数据仓库入门:Data Warehousing for Dummies》第一章的介绍,数据仓库(Data Warehouse, DW)是一种用于存储历史数据以支持业务决策的数据管理系统。它通过整合来自不同源系统(如事务处理系统)的数据,为分析...
数据仓库是一种专为决策支持系统设计的数据库,它与传统操作型数据库不同,主要服务于企业的高级分析和决策。数据仓库的出现是因为操作型数据库在满足决策支持系统的高速查询、汇总和分析方面存在局限性。W.H. Inmon...
Snowflake:Snowflake数据仓库入门.docx
### 数据仓库基础知识点详解 #### 一、决策支持系统(DSS)的发展历程 数据仓库的概念与决策支持系统的演进紧密相连。理解决策支持系统的发展背景对于深入掌握数据仓库的基本概念至关重要。 **1.1 信息处理领域的...
数据仓库是一种专为数据分析设计的系统,它存储了大量的历史数据,并优化了查询性能,以便进行高效的数据分析和决策支持。本教程将引导你逐步了解数据仓库的基础知识,并帮助你提升在这一领域的技能。 数据仓库的...