Python是一种对代码风格很重视的语言,从缩进就能看出这一点,Python强调易于理解。最近在负责代码重构的工作,为了统一大家的代码风格,制订规范,学习了一下网上这份Google的Python风格指南。
Contents
风格一致性
请务必保持代码的一致性
如果你正在编辑代码, 花几分钟看一下周边代码, 然后决定风格. 如果它们在所有的算术操作符两边都使用空格, 那么你也应该这样做. 如果它们的注释都用标记包围起来, 那么你的注释也要这样.
制定风格指南的目的在于让代码有规可循, 这样人们就可以专注于"你在说什么", 而不是"你在怎么说". 我们在这里给出的是全局的规范, 但是局部的规范同样重要. 如果你加到一个文件里的代码和原有代码大相径庭, 它会让读者不知所措. 避免这种情况.
yeolar: 有些代码库的风格和下面的风格不同,比如wxPython。如果你只是开发基于这些库的工具或扩展,建议和这些代码库的风格保持一致。
Python语言规范
pychecker
Tip
对你的代码运行pychecker
确保对你的代码运行pychecker.
关于如何运行pychecker的更多信息, 参考 pychecker主页
你可以设置一个叫做__pychecker__的模块级变量来抑制适当的告警. 例如:
__pychecker__ = 'no-callinit no-classattr'
采用这种抑制方式的好处是我们可以轻松查找抑制并回顾它们.
你可以使用 pychecker --help 来获取pychecker告警列表.
要抑制"参数未使用"告警, 你可以用"_"作为参数标识符, 或者在参数名前加"unused_". 遇到不能改变参数名的情况, 你可以通过在函数开头"提到"它们来消除告警. 例如:
def foo(a, unused_b, unused_c, d=None, e=None): (d, e) = (d, e) # 让pychecker不告警 return a
理想情况下, 我们以后会扩展pychecker以确保你真的没有使用这些参数.
导入
Tip
仅对包和模块使用导入
使用 import x 来导入包和模块.
使用 form x import y, 其中x是包前缀, y是不带前缀的模块名.
使用 form x import y as z, 如果两个要导入的模块都叫做z或者y太长了.
例如, 模块 sound.effects.echo 可以用如下方式导入:
from sound.effects import echo ... echo.EchoFilter(input, output, delay=0.7, atten=4)
导入时不要使用相对名称. 即使模块在同一个包中, 也要使用完整包名. 这能帮助你避免无意间导入一个包两次.
包
Tip
使用模块的全路径名来导入每个模块
所有的新代码都应该用完整包名来导入每个模块.
应该像下面这样导入:
# Reference in code with complete name. import sound.effects.echo # Reference in code with just module name (preferred). from sound.effects import echo
异常
Tip
允许使用异常, 但必须小心
异常必须遵守特定条件:
-
像这样触发异常: raise MyException("Error message") 或者 raise MyException . 不要使用两个参数的形式( raise MyException, "Error message" )或者过时的字符串异常( raise "Error message" ).
-
模块或包应该定义自己的特定域的异常基类, 这个基类应该从内建的Exception类继承. 模块的异常基类应该叫做"Error".
class Error(Exception): pass
-
永远不要使用 except: 语句来捕获所有异常, 也不要捕获 Exception 或者 StandardError , 除非你打算重新触发该异常, 或者你已经在当前线程的最外层(记得还是要打印一条错误消息). 在异常这方面, Python非常宽容, except: 真的会捕获包括Python语法错误在内的任何错误. 使用 except: 很容易隐藏真正的bug.
-
尽量减少try/except块中的代码量. try块的体积越大, 期望之外的异常就越容易被触发. 这种情况下, try/except块将隐藏真正的错误.
-
使用finally子句来执行那些无论try块中有没有异常都应该被执行的代码. 这对于清理资源常常很有用, 例如关闭文件.
全局变量
Tip
避免全局变量
避免使用全局变量, 用类变量来代替. 但也有一些例外:
- 脚本的默认选项.
- 模块级常量. 例如: PI = 3.14159. 常量应该全大写, 用下划线连接.
- 有时候用全局变量来缓存值或者作为函数返回值很有用.
- 如果需要, 全局变量应该仅在模块内部可用, 并通过模块级的公共函数来访问.
嵌套/本地/内部类或函数
Tip
鼓励使用嵌套/本地/内部类或函数
推荐使用.
yeolar: 对较小的私有使用的类或函数使用.
列表推导(List Comprehensions)
Tip
可以在简单情况下使用
适用于简单情况. 每个部分应该单独置于一行: 映射表达式, for语句, 过滤器表达式. 禁止多重for语句或过滤器表达式. 复杂情况下还是使用循环.
yeolar: 分行以总长度来判断,不超过80字符时,仍建议写在同一行.
No: result = [(x, y) for x in range(10) for y in range(5) if x * y > 10] return ((x, y, z) for x in xrange(5) for y in xrange(5) if x != y for z in xrange(5) if y != z)
Yes: result = [] for x in range(10): for y in range(5): if x * y > 10: result.append((x, y)) for x in xrange(5): for y in xrange(5): if x != y: for z in xrange(5): if y != z: yield (x, y, z) return ((x, complicated_transform(x)) for x in long_generator_function(parameter) if x is not None) squares = [x * x for x in range(10)] eat(jelly_bean for jelly_bean in jelly_beans if jelly_bean.color == 'black')
默认迭代器和操作符
Tip
如果类型支持, 就使用默认迭代器和操作符. 比如列表, 字典及文件等.
如果类型支持, 就使用默认迭代器和操作符, 例如列表, 字典和文件. 内建类型也定义了迭代器方法. 优先考虑这些方法, 而不是那些返回列表的方法. 除非你在遍历容器时不能修改它.
Yes: for key in adict: ... if key not in adict: ... if obj in alist: ... for line in afile: ... for k, v in dict.iteritems(): ...
No: for key in adict.keys(): ... if not adict.has_key(key): ... for line in afile.readlines(): ...
生成器
Tip
按需使用生成器.
鼓励使用. 注意在生成器函数的文档字符串中使用"Yields:"而不是"Returns:".
yeolar: 对于实际需要使用列表中的每个元素的情况,且内存占用很小,仍可以使用一次取得全部元素的方式。
Lambda函数
Tip
适用于单行函数
默认参数值
Tip
适用于大部分情况.
鼓励使用, 不过有如下注意事项:
不要在函数或方法定义中使用可变对象作为默认值.
Yes: def foo(a, b=None): if b is None: b = []
No: def foo(a, b=[]): ...
调用方代码必须为带有默认值的参数使用带有名字的值. 这多少能增加代码的可读性, 并且当增加参数时能避免和检测接口被破坏.
def foo(a, b=1): ...
Yes: foo(1) foo(1, b=2)
No: foo(1, 2)
属性(properties)
Tip
访问和设置数据成员时, 你通常会使用简单, 轻量级的访问和设置函数. 建议用属性来代替它们.
你通常习惯于使用访问或设置方法来访问或设置数据, 它们简单而轻量. 不过我们建议你在新的代码中使用属性. 只读属性应该用 @property 装饰器来创建.
如果子类没有覆盖属性, 那么属性的继承可能看上去不明显. 因此使用者必须确保访问方法间接被调用, 以保证子类中的重载方法被属性调用(使用模板方法设计模式).
Yes: import math class Square(object): """A square with two properties: a writable area and a read-only perimeter. To use: >>> sq = Square(3) >>> sq.area 9 >>> sq.perimeter 12 >>> sq.area = 16 >>> sq.side 4 >>> sq.perimeter 16 """ def __init__(self, side): self.side = side def __get_area(self): """Calculates the 'area' property.""" return self.side ** 2 def ___get_area(self): """Indirect accessor for 'area' property.""" return self.__get_area() def __set_area(self, area): """Sets the 'area' property.""" self.side = math.sqrt(area) def ___set_area(self, area): """Indirect setter for 'area' property.""" self.__set_area(area) area = property(___get_area, ___set_area, doc="""Gets or sets the area of the square.""") @property def perimeter(self): return self.side * 4
(译者注: 老实说, 我觉得这段示例代码很不恰当, 有必要这么蛋疼吗?)
True/False的求值
Tip
尽可能使用隐式false
尽可能使用隐式的false, 例如: 使用 if foo: 而不是 if foo != []: . 不过还是有一些注意事项需要你铭记在心:
-
永远不要用==或者!=来比较单件, 比如None. 使用is或者is not.
-
注意: 当你写下 if x: 时, 你其实表示的是 if x is not None . 例如: 当你要测试一个默认值是None的变量或参数是否被设为其它值. 这个值在布尔语义下可能是false!
-
永远不要用==将一个布尔量与false相比较. 使用 if not x: 代替. 如果你需要区分false和None, 你应该用像 if not x and x is not None: 这样的语句.
-
对于序列(字符串, 列表, 元组), 要注意空序列是false. 因此 if not seq: 或者 if seq: 比 if len(seq): 或 if not len(seq): 要更好.
-
处理整数时, 使用隐式false可能会得不偿失(即不小心将None当做0来处理). 你可以将一个已知是整型(且不是len()的返回结果)的值与0比较.
Yes: if not users: print 'no users' if foo == 0: self.handle_zero() if i % 10 == 0: self.handle_multiple_of_ten()
No: if len(users) == 0: print 'no users' if foo is not None and not foo: self.handle_zero() if not i % 10: self.handle_multiple_of_ten()
-
注意'0'(字符串)会被当做true.
过时的语言特性
Tip
尽可能使用字符串方法取代字符串模块. 使用函数调用语法取代apply(). 使用列表推导, for循环取代filter(), map()以及reduce().
我们不使用不支持这些特性的Python版本, 所以没理由不用新的方式.
No: words = string.split(foo, ':') map(lambda x: x[1], filter(lambda x: x[2] == 5, my_list)) apply(fn, args, kwargs)
Yes: words = foo.split(':') [x[1] for x in my_list if x[2] == 5] fn(*args, **kwargs)
静态Scoping(Lexical Scoping)
Tip
推荐使用
嵌套的Python函数可以引用外层函数中定义的变量, 但是不能够对它们赋值. 变量绑定的解析是使用静态Scoping, 也就是基于静态的程序文本. 对一个块中的某个名称的任何赋值都会导致Python将对该名称的全部引用当做局部变量, 甚至是赋值前的处理. 如果碰到global声明, 该名称就会被视作全局变量.
一个使用这个特性的例子:
def get_adder(summand1): """Returns a function that adds numbers to a given number.""" def adder(summand2): return summand1 + summand2 return adder
(译者注: 这个例子有点诡异, 你应该这样使用这个函数: sum = get_adder(summand1)(summand2) )
可能导致让人迷惑的bug. 例如下面这个例子:
i = 4 def foo(x): def bar(): print i, # ... # A bunch of code here # ... for i in x: # Ah, i *is* local to Foo, so this is what Bar sees print i, bar()
因此 foo([1, 2, 3]) 会打印 1 2 3 3 , 不是 1 2 3 4 .
(译者注: x是一个列表, for循环其实是将x中的值依次赋给i.这样对i的赋值就隐式的发生了, 整个foo函数体中的i都会被当做局部变量, 包括bar()中的那个. 这一点与C++之类的静态语言还是有很大差别的.)
函数与方法装饰器
Tip
如果好处很显然, 就明智而谨慎的使用装饰器
用于函数及方法的装饰器(也就是@标记). 最常见的装饰器是@classmethod 和@staticmethod, 用于将常规函数转换成类方法或静态方法. 不过, 装饰器语法也允许用户自定义装饰器. 特别地, 对于某个函数 my_decorator , 下面的两段代码是等效的:
class C(object): @my_decorator def method(self): # method body ...
class C(object): def method(self): # method body ... method = my_decorator(method)
如果好处很显然, 就明智而谨慎的使用装饰器. 装饰器应该遵守和函数一样的导入和命名规则. 装饰器的python文档应该清晰的说明该函数是一个装饰器. 请为装饰器编写单元测试.
避免装饰器自身对外界的依赖(即不要依赖于文件, socket, 数据库连接等), 因为装饰器运行时这些资源可能不可用(例如导入时, 使用pychecker或其它工具时). 应该保证一个用有效参数调用的装饰器在所有情况下都是成功的.
装饰器是一种特殊形式的"顶级代码". 参考后面关于Main的话题.
线程
Tip
不要依赖内建类型的原子性.
虽然Python的内建类型例如字典看上去拥有原子操作, 但是在某些情形下它们仍然不是原子的(即: 如果__hash__或__eq__被实现为Python方法)且它们的原子性是靠不住的. 你也不能指望原子变量赋值(因为这个反过来依赖字典).
优先使用Queue模块的 Queue 数据类型作为线程间的数据通信方式. 另外, 使用threading模块及其锁原语. 了解条件变量的合适使用方式, 这样你就可以使用 threading.Condition 来取代低级别的锁了.
威力过大的特性
Tip
避免使用这些特性
Python风格规范
分号
Tip
不要在行尾加分号, 也不要用分号将两条命令放在同一行.
行长度
Tip
每行不超过80个字符
例外: 如果使用Python 2.4或更早的版本, 导入模块的行可能多于80个字符.
Python会将圆括号, 中括号和花括号中的行隐式的连接起来, 你可以利用这个特点. 如果需要, 你可以在表达式外围增加一对额外的圆括号.
Yes: foo_bar(self, width, height, color='black', design=None, x='foo', emphasis=None, highlight=0) if (width == 0 and height == 0 and color == 'red' and emphasis == 'strong'):
如果一个文本字符串在一行放不下, 可以使用圆括号来实现隐式行连接:
x = ('This will build a very long long ' 'long long long long long long string')
注意上面例子中的元素缩进; 你可以在本文的 缩进 部分找到解释.
括号
Tip
宁缺毋滥的使用括号
除非是用于实现行连接, 否则不要在返回语句或条件语句中使用括号. 不过在元组两边使用括号是可以的.
Yes: if foo: bar() while x: x = bar() if x and y: bar() if not x: bar() return foo for (x, y) in dict.items(): ...
No: if (x): bar() if not(x): bar() return (foo)
缩进
Tip
用4个空格来缩进代码
绝对不要用tab, 也不要tab和空格混用. 对于行连接的情况, 你应该要么垂直对齐换行的元素(见 行长度 部分的示例), 或者使用4空格的悬挂式缩进(这时第一行不应该有参数):
Yes: # Aligned with opening delimiter foo = long_function_name(var_one, var_two, var_three, var_four) # 4-space hanging indent; nothing on first line foo = long_function_name( var_one, var_two, var_three, var_four)
No: # Stuff on first line forbidden foo = long_function_name(var_one, var_two, var_three, var_four) # 2-space hanging indent forbidden foo = long_function_name( var_one, var_two, var_three, var_four)
空行
Tip
顶级定义之间空两行, 方法定义之间空一行
顶级定义之间空两行, 比如函数或者类定义. 方法定义, 类定义与第一个方法之间, 都应该空一行. 函数或方法中, 某些地方要是你觉得合适, 就空一行.
空格
Tip
按照标准的排版规范来使用标点两边的空格
括号内不要有空格.
Yes: spam(ham[1], {eggs: 2}, [])
No: spam( ham[ 1 ], { eggs: 2 }, [ ] )
不要在逗号, 分号, 冒号前面加空格, 但应该在它们后面加(除了在行尾).
Yes: if x == 4: print x, y x, y = y, x
No: if x == 4 : print x , y x , y = y , x
参数列表, 索引或切片的左括号前不应加空格.
Yes: spam(1)
Yes: spam (1)
Yes: dict['key'] = list[index]
No: dict ['key'] = list [index]
在二元操作符两边都加上一个空格, 比如赋值(=), 比较(==, <, >, !=, <>, <=, >=, in, not in, is, is not), 布尔(and, or, not). 至于算术操作符两边的空格该如何使用, 需要你自己好好判断. 不过两侧务必要保持一致.
Yes: x == 1
No: x<1
当'='用于指示关键字参数或默认参数值时, 不要在其两侧使用空格.
Yes: def complex(real, imag=0.0): return magic(r=real, i=imag)
No: def complex(real, imag = 0.0): return magic(r = real, i = imag)
不要用空格来垂直对齐多行间的标记, 因为这会成为维护的负担(适用于:, #, =等):
Yes: foo = 1000 # comment long_name = 2 # comment that should not be aligned dictionary = { "foo": 1, "long_name": 2, }
No: foo = 1000 # comment long_name = 2 # comment that should not be aligned dictionary = { "foo" : 1, "long_name": 2, }
Python解释器
Tip
每个模块都应该以#!/usr/bin/env python<version>开头
模块应该以一个构造行开始, 以指定执行这个程序用到的Python解释器:
#!/usr/bin/env python2.4
总是使用最特化的版本, 例如, 使用/usr/bin/python2.4, 而不是 /usr/bin/python2. 这样, 当升级到不同的Python版本时, 能轻松找到依赖关系, 同时也避免了使用时的迷惑. 例如, /usr/bin/python2是表示/usr/bin/python2.0.1还是/usr/bin/python2.3.0?
注释
Tip
确保对模块, 函数, 方法和行内注释使用正确的风格
文档字符串
Python有一种独一无二的的注释方式: 使用文档字符串. 文档字符串是包, 模块, 类或函数里的第一个语句. 这些字符串可以通过对象的__doc__成员被自动提取, 并且被pydoc所用. (你可以在你的模块上运行pydoc试一把, 看看它长什么样). 我们对文档字符串的惯例是使用三重双引号. 一个文档字符串应该这样组织: 首先是一行以句号, 问号或惊叹号结尾的概述. 接着是一个空行. 接着是文档字符串剩下的部分, 它应该与文档字符串的第一行的第一个引号对齐. 下面有更多文档字符串的格式化规范.
模块
每个文件应该包含下列项, 依次是:
- 版权声明(例如, Copyright 2008 Google Inc.)
- 一个许可样板. 根据项目使用的许可(例如, Apache 2.0, BSD, LGPL, GPL), 选择合适的样板
- 作者声明, 标识文件的原作者.
yeolar: 不严格要求.
函数和方法
如果不是既显然又简短, 任何函数或方法都需要一个文档字符串. 而且, 任何外部可访问的函数或方法, 不管多短多简单, 都需要文档字符串. 文档字符串应该包含函数做什么, 以及输入和输出的详细描述. 通常, 不应该描述"怎么做", 除非是一些复杂的算法. 对于技巧性的代码, 块注释或者行内注释是最重要的. 文档字符串应该提供足够的信息, 当别人编写代码调用该函数时, 他不需要看一行代码, 只要看文档字符串就可以了. 应该给参数单独写文档. 在冒号后跟上解释, 而且应该用统一的悬挂式2或4空格缩进. 文档字符串应该在需要特定类型的地方指定期望的类型. "Raise:"部分应该列出该函数可能触发的所有异常. 生成器函数的文档字符串应该用"Yields:"而非"Returns:".
def fetch_bigtable_rows(big_table, keys, other_silly_variable=None): """Fetches rows from a Bigtable. Retrieves rows pertaining to the given keys from the Table instance represented by big_table. Silly things may happen if other_silly_variable is not None. Args: big_table: An open Bigtable Table instance. keys: A sequence of strings representing the key of each table row to fetch. other_silly_variable: Another optional variable, that has a much longer name than the other args, and which does nothing. Returns: A dict mapping keys to the corresponding table row data fetched. Each row is represented as a tuple of strings. For example: {'Serak': ('Rigel VII', 'Preparer'), 'Zim': ('Irk', 'Invader'), 'Lrrr': ('Omicron Persei 8', 'Emperor')} If a key from the keys argument is missing from the dictionary, then that row was not found in the table. Raises: IOError: An error occurred accessing the bigtable.Table object. """ pass
类
类应该在其定义下有一个用于描述该类的文档字符串. 如果你的类有公共属性(Attributes), 那么文档中应该有一个属性(Attributes)段. 并且应该遵守和函数参数相同的格式.
class SampleClass(object): """Summary of class here. Longer class information.... Longer class information.... Attributes: likes_spam: A boolean indicating if we like SPAM or not. eggs: An integer count of the eggs we have laid. """ def __init__(self, likes_spam=False): """Inits SampleClass with blah.""" self.likes_spam = likes_spam self.eggs = 0 def public_method(self): """Performs operation blah."""
块注释和行注释
最需要写注释的是代码中那些技巧性的部分. 如果你在下次代码走查的时候必须解释一下, 那么你应该现在就给它写注释. 对于复杂的操作, 应该在其操作开始前写上若干行注释. 对于不是一目了然的代码, 应在其行尾添加注释.
# We use a weighted dictionary search to find out where i is in # the array. We extrapolate position based on the largest num # in the array and the array size and then do binary search to # get the exact number. if i & (i-1) == 0: # true iff i is a power of 2
为了提高可读性, 注释应该至少离开代码2个空格.
另一方面, 绝不要描述代码. 假设阅读代码的人比你更懂Python, 他只是不知道你的代码要做什么.
# BAD COMMENT: Now go through the b array and make sure whenever i occurs # the next element is i+1
yeolar: 不要注释显而易见的事情.
类
Tip
如果一个类不继承自其它类, 就显式的从object继承. 嵌套类也一样.
No: class SampleClass: pass class OuterClass: class InnerClass: pass
Yes: class SampleClass(object): pass class OuterClass(object): class InnerClass(object): pass class ChildClass(ParentClass): """Explicitly inherits from another class already."""
继承自 object 是为了使属性(properties)正常工作, 并且这样可以保护你的代码, 使其不受Python 3000的一个特殊的潜在不兼容性影响. 这样做也定义了一些特殊的方法, 这些方法实现了对象的默认语义, 包括 __new__, __init__, __delattr__, __getattribute__, __setattr__, __hash__, __repr__, and __str__ .
字符串
Tip
用%操作符格式化字符串, 即使参数都是字符串. 不过也不能一概而论, 你需要在+和%之间好好判定.
No: x = '%s%s' % (a, b) # use + in this case x = imperative + ', ' + expletive + '!' x = 'name: ' + name + '; score: ' + str(n)
Yes: x = a + b x = '%s, %s!' % (imperative, expletive) x = 'name: %s; score: %d' % (name, n)
避免在循环中用+和+=操作符来累加字符串. 由于字符串是不可变的, 这样做会创建不必要的临时对象, 并且导致二次方而不是线性的运行时间. 作为替代方案, 你可以将每个子串加入列表, 然后在循环结束后用 .join 连接列表. (也可以将每个子串写入一个 cStringIO.StringIO 缓存中.)
No: employee_table = '<table>' for last_name, first_name in employee_list: employee_table += '<tr><td>%s, %s</td></tr>' % (last_name, first_name) employee_table += '</table>'
Yes: items = ['<table>'] for last_name, first_name in employee_list: items.append('<tr><td>%s, %s</td></tr>' % (last_name, first_name)) items.append('</table>') employee_table = ''.join(items)
为多行字符串使用三重双引号而非三重单引号. 不过要注意, 通常用隐式行连接更清晰, 因为多行字符串与程序其他部分的缩进方式不一致.
No: print """This is pretty ugly. Don't do this. """
Yes: print ("This is much nicer.\n" "Do it this way.\n")
TODO注释
Tip
为临时代码使用TODO注释, 它是一种短期解决方案. 不算完美, 但够好了.
TODO注释应该在所有开头处包含"TODO"字符串, 紧跟着是用括号括起来的你的名字, email地址或其它标识符. 然后是一个可选的冒号. 接着必须有一行注释, 解释要做什么. 主要目的是为了有一个统一的TODO格式, 这样添加注释的人就可以搜索到(并可以按需提供更多细节). 写了TODO注释并不保证写的人会亲自解决问题.
# TODO(kl@gmail.com): Drop the use of "has_key". # TODO(Zeke) change this to use relations.
如果你的TODO是"将来做某事"的形式, 那么请确保你包含了一个指定的日期("2009年11月解决")或者一个特定的事件("等到所有的客户都可以处理XML请求就移除这些代码").
导入格式
Tip
每个导入应该独占一行
Yes: import os import sys
No: import os, sys
导入总应该放在文件顶部, 位于模块注释和文档字符串之后, 模块全局变量和常量之前. 导入应该按照从最通用到最不通用的顺序分组:
- 标准库导入
- 第三方库导入
- 应用程序指定导入
yeolar: 各组之间建议加入空行.
每种分组中, 应该根据每个模块的完整包路径按字典序排序, 忽略大小写.
import foo from foo import bar from foo.bar import baz from foo.bar import Quux from Foob import ar
语句
Tip
通常每个语句应该独占一行
不过, 如果测试结果与测试语句在一行放得下, 你也可以将它们放在同一行. 如果是if语句, 只有在没有else时才能这样做. 特别地, 绝不要对 try/except 这样做, 因为try和except不能放在同一行.
Yes: if foo: bar(foo)
No: if foo: bar(foo) else: baz(foo) try: bar(foo) except ValueError: baz(foo) try: bar(foo) except ValueError: baz(foo)
访问控制
Tip
在Python中, 对于琐碎又不太重要的访问函数, 你应该直接使用公有变量来取代它们, 这样可以避免额外的函数调用开销. 当添加更多功能时, 你可以用属性(property)来保持语法的一致性.
(译者注: 重视封装的面向对象程序员看到这个可能会很反感, 因为他们一直被教育: 所有成员变量都必须是私有的! 其实, 那真的是有点麻烦啊. 试着去接受Pythonic哲学吧)
另一方面, 如果访问更复杂, 或者变量的访问开销很显著, 那么你应该使用像 get_foo() 和 set_foo() 这样的函数调用. 如果之前的代码行为允许通过属性(property)访问 , 那么就不要将新的访问函数与属性绑定. 这样, 任何试图通过老方法访问变量的代码就没法运行, 使用者也就会意识到复杂性发生了变化.
命名
Tip
module_name, package_name, ClassName, method_name, ExceptionName, function_name, GLOBAL_VAR_NAME, instance_var_name, function_parameter_name, local_var_name.
应该避免的名称
- 单字符名称, 除了计数器和迭代器.
- 包/模块名中的连字符(-)
- 双下划线开头并结尾的名称(Python保留, 例如__init__)
命名约定
- 所谓"内部(Internal)"表示仅模块内可用, 或者, 在类内是保护或私有的.
- 用单下划线(_)开头表示模块变量或函数是protected的(使用import * from时不会包含).
- 用双下划线(__)开头的实例变量或方法表示类内私有.
- 将相关的类和顶级函数放在同一个模块里. 不像Java, 没必要限制一个类一个模块.
- 对类名使用大写字母开头的单词(如CapWords, 即Pascal风格), 但是模块名应该用小写加下划线的方式(如lower_with_under.py). 尽管已经有很多现存的模块使用类似于CapWords.py这样的命名, 但现在已经不鼓励这样做, 因为如果模块名碰巧和类名一致, 这会让人困扰.
Python之父Guido推荐的规范
Modules | lower_with_under | _lower_with_under |
Packages | lower_with_under | |
Classes | CapWords | _CapWords |
Exceptions | CapWords | |
Functions | lower_with_under() | _lower_with_under() |
Global/Class Constants | CAPS_WITH_UNDER | _CAPS_WITH_UNDER |
Global/Class Variables | lower_with_under | _lower_with_under |
Instance Variables | lower_with_under | _lower_with_under (protected) or __lower_with_under (private) |
Method Names | lower_with_under() | _lower_with_under() (protected) or __lower_with_under() (private) |
Function/Method Parameters | lower_with_under | |
Local Variables | lower_with_under |
main和__main__
Tip
即使是一个打算被用作脚本的文件, 也应该是可导入的. 并且简单的导入不应该导致这个脚本的主功能(main functionality)被执行, 这是一种副作用. 主功能应该放在一个main()函数中.
在Python中, pychecker, pydoc以及单元测试要求模块必须是可导入的. 你的代码应该在执行主程序前总是检查 if __name__ == '__main__' , 这样当模块被导入时主程序就不会被执行.
def main(): ... if __name__ == '__main__': main()
所有的顶级代码在模块导入时都会被执行. 要小心不要去调用函数, 创建对象, 或者执行那些不应该在使用pychecker或pydoc时执行的操作.
相关推荐
Google Python 风格指南是一份专门为Python编程语言制定的规范文档,由Google公司提供,旨在指导开发者编写清晰、规范的Python代码。该风格指南分为几个部分,包括Python语言规范、Python风格规范以及一些额外的建议...
### Google Python 风格...综上所述,Google Python风格指南涵盖了Python编程的各个方面,从语言特性的使用到编码规范都有详细的指导。遵循这些指南不仅能够帮助开发者编写出高质量的代码,还能够提高团队协作的效率。
Google公司作为业界标杆,其发布的Python风格指南是广大Python开发者遵循的规范之一。本文将深入探讨Google Python风格指南中涉及的关键知识点,包括Python语言规范、代码风格规范、导入模块规范以及异常处理规范等...
《Google Python风格指南》是Google公司为Python程序员制定的一套编码规范和最佳实践,旨在提高代码的可读性、可维护性和团队协作效率。这份指南不仅适用于Google内部,也被广泛应用于全球Python开发者社区,成为...
Google Python 风格指南 - 中文版, chm格式
google python风格指南,http://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/python_style_rules/
对于Python开发者来说,了解并遵循Python风格指南(也称为PEP 8)是至关重要的。Python-Google开源项目风格指南提供了一套详细的规则和建议,帮助开发者编写更易于理解和维护的Python代码。以下是一些关键的Python...
Google开源项目风格指南——中文版 ReadTheDocs 托管地址:在线阅读最新版本 GitHub 托管地址:zh-google-styleguide 离线文档下载地址:release 笔记 ...谷歌Python风格指南 Google JavaScript 风格指
最新Google开源项目风格指南(中文版)sphinx生成的html和epub文档,Google C++ 风格指南,Google Objective-C风格指南,Google Python 风格指南,Google JSON 风格指南,Google Shell 风格指南
最新Google开源项目风格指南(中文版)sphinx生成的文档,特转为了pdf格式,Google C++ 风格指南,Google Objective-C风格指南,Google Python 风格指南,Google JSON 风格指南,Google Shell 风格指南
本文档是 Google 公司的 Python 编码规范,旨在为 Python 程序员提供一个详细的编码风格指南。该指南涵盖了 Python 语言规则、 Python 风格规则、代码编写风格、注释、类、字符串、TODO 注释、导入格式、语句控制、...
谷歌开源项目Python风格指南与编写简洁可读代码的建议_python-style-guide
【标题】"谷歌开源项目Python风格指南与编写简洁可读代码的建议" 是一份重要的资源,它涵盖了Python编程的最佳实践,特别关注了代码的风格和可读性。这份指南是谷歌为Python开发者提供的,旨在提高代码质量,促进...
总的来说,遵循Python风格规范和Google开源项目风格指南能够提升代码质量,促进团队合作,使得代码更容易被理解和维护。对于任何Python开发者来说,理解和应用这些规范都是至关重要的。通过阅读和实践这份指南,我们...
此外,关于命名规则,Google的风格指南建议使用驼峰式命名,首字母小写的风格,例如myVariableName。 为了提高代码的可读性,文档建议使用空行来分隔代码块,使用空格来分隔操作符两侧的元素,以及在逗号后添加空格...
《Google Python 编码风格指南中译版》是Google针对Python编程制定的一套详细编码规范,旨在提升代码的可读性、可维护性和团队协作效率。以下是对该指南部分要点的详细解读: 1. **避免使用`pychecker`的警告**: ...
Google Python编程规范是一份由Google提供的官方编程风格指南,旨在统一Python编程实践,提升代码的可读性和可维护性。文档包括了对于Python语言规范的详细说明,以及一些编程习惯上的最佳实践。在文档中,对于代码...
Google开源项目风格指南是一套针对Python编程语言的编码规范和最佳实践,由Google的工程师们提出,旨在为Python代码的编写提供统一的风格指导。 ### 代码风格规范 #### 1. 分号与命令行的使用 在Python中,通常不...
- **命名规则**:Python风格指南强调使用小写字母和下划线来命名变量、函数和类,如`my_variable`和`my_function`。模块名应全小写。 - **注释和文档字符串**:推荐使用三引号`"""`包围的多行注释来创建文档字符串,...