在这里贴一个pig源码的分析,做pig很长时间没做笔记,不包含任何细节,以后有机会再说吧
http://blackproof.iteye.com/blog/1769219
hadoop pig入门总结
- pig简介
- pig数据类型
- pig latin语法
- pig udf自定义
- pig derived衍生
- 推荐书籍 programming pig
- 推荐网站 http://pig.apache.org/docs/r0.10.0/basic.html
pig简介
pig是hadoop上层的衍生架构,与hive类似。对比hive(hive类似sql,是一种声明式的语言),pig是一种过程语言,类似于存储过程一步一步得进行数据转化。
pig数据类型
- double > float > long > int > bytearray
- tuple|bag|map|chararray > bytearray
double float long int chararray bytearray都相当于pig的基本类型
tuple相当于数组 ,但是可以类型不一,举例('dirkzhang','dallas',41)
Bag相当于tuple的一个集合,举例{('dirk',41),('kedde',2),('terre',31)},在group的时候会生成bag
Map相当于哈希表,key为chararray,value为任意类型,例如['name'#dirk,'age'#36,'num'#41
nulls 表示的不只是数据不存在,他更表示数据是unkown
pig latin语法
1:load
LOAD 'data' [USING function] [AS schema];
例如:
load = LOAD 'sql://{SELECT MONTH_ID,DAY_ID,PROV_ID FROM zb_d_bidwmb05009_010}' USING com.xxxx.dataplatform.bbdp.geniuspig.VerticaLoader('oracle','192.168.6.5','dev','1522','vbap','vbap','1') AS (MONTH_ID:chararray,DAY_ID:chararray,PROV_ID:chararray);
Table = load ‘url’ as (id,name…..); //table和load之间除了等号外 还必须有个空格 不然会出错,url一定要带引号,且只能是单引号。
2:filter
alias = FILTER alias BY expression;
Table = filter Table1 by + A; //A可以是 id > 10;not name matches ‘’,is not null 等,可以用and 和or连接各条件
例如:
filter = filter load20 by ( MONTH_ID == '1210' and DAY_ID == '18' and PROV_ID == '010' );
3:group
alias = GROUP alias { ALL | BY expression} [, alias ALL | BY expression …] [USING 'collected' | 'merge'] [PARTITION BY partitioner] [PARALLEL n];
pig的分组,不仅是数据上的分组,在数据的schema形式上也进行分组为groupcolumn:bag
Table3 = group Table2 by id;也可以Table3 = group Table2 by (id,name);括号必须加
可以使用ALL实现对所有字段的分组
4:foreach
alias = FOREACH alias GENERATE expression [AS schema] [expression [AS schema]….];
alias = FOREACH nested_alias {
alias = {nested_op | nested_exp}; [{alias = {nested_op | nested_exp}; …]
GENERATE expression [AS schema] [expression [AS schema]….]
};
一般跟generate一块使用
Table = foreach Table generate (id,name);括号可加可不加。
avg = foreach Table generate group, AVG(age); MAX ,MIN..
在进行数据过滤时,建议尽早使用foreach generate将多余的数据过滤掉,减少数据交换
5:join
Inner join Syntax
alias = JOIN alias BY {expression|'('expression [, expression …]')'} (, alias BY {expression|'('expression [, expression …]')'} …) [USING 'replicated' | 'skewed' | 'merge' | 'merge-sparse'] [PARTITION BY partitioner] [PARALLEL n]; |
Outer join Syntax
alias = JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY right-alias-column [USING 'replicated' | 'skewed' | 'merge'] [PARTITION BY partitioner] [PARALLEL n]; |
join/left join / right join
daily = load 'A' as (id,name, sex);
divs = load 'B' as (id,name, sex);
join
jnd = join daily by (id, name), divs by (id, name);
left join
jnd = join daily by (id, name) left outer, divs by (id, name);
也可以同时多个变量,但只用于inner join
A = load 'input1' as (x, y);
B = load 'input2' as (u, v);
C = load 'input3' as (e, f);
alpha = join A by x, B by u, C by e;
6: union
alias = UNION [ONSCHEMA] alias, alias [, alias …];
union 相当与sql中的union,但与sql不通的是pig中的union可以针对两个不同模式的变量:如果两个变量模式相同,那么union后的变量模式与 变量的模式一样;如果一个变量的模式可以由另一各变量的模式强制类型转换,那么union后的变量模式与转换后的变量模式相同;否则,union后的变量 没有模式。
A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:float);
C = union A, B;
describe C;
C: {x: int,y: float}
A = load 'input1' as (x:double, y:float);
B = load 'input2' as (x:int, y:double);
C = union A, B;
describe C;
C: {x: double,y: double}
A = load 'input1' as (x:int, y:float);
B = load 'input2' as (x:int, y:chararray);
C = union A, B;
describe C;
Schema for C unknown.
注意:在pig 1.0中 执行不了最后一种union。
如果需要对两个具有不通列名的变量union的话,可以使用onschema关键字
A = load 'input1' as (w: chararray, x:int, y:float);
B = load 'input2' as (x:int, y:double, z:chararray);
C = union onschema A, B;
describe C;
C: {w: chararray,x: int,y: double,z: chararray}
join和union之后alias的别名会变
7:Dump
dump alias
用于在屏幕上显示数据。
8:Order by
alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] } [PARALLEL n];
A = order Table by id desc;
9:distinct
A = distinct alias;
10:limit
A = limit alias 10;
11:sample
SAMPLE alias size;
随机抽取指定比例(0到1)的数据。
some = sample divs 0.1;
13:cross
alias = CROSS alias, alias [, alias …] [PARTITION BY partitioner] [PARALLEL n];
将多个数据集中的数据按照字段名进行同值组合,形成笛卡尔积。
--cross.pig
daily = load 'NYSE_daily' as (exchange:chararray, symbol:chararray,date:chararray, open:float, high:float, low:float,
close:float, volume:int, adj_close:float);
divs = load 'NYSE_dividends' as (exchange:chararray, symbol:chararray,date:chararray, dividends:float);
tonsodata = cross daily, divs parallel 10;
15:split
Syntax
SPLIT alias INTO alias IF expression, alias IF expression [, alias IF expression …] [, alias OTHERWISE];
A = LOAD 'data' AS (f1:int,f2:int,f3:int);
DUMP A;
(1,2,3)
(4,5,6)
(7,8,9)
SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);
DUMP X;
(1,2,3)
(4,5,6)
DUMP Y;
(4,5,6)
DUMP Z;
(1,2,3)
(7,8,9)
16:store
Store … into … Using…
pig在别名维护上:
1、join
如e = join d by name,b by name;
g = foreach e generate $0 as one:chararray, $1 as two:int, $2 as three:chararray,$3 asfour:int;
他生成的schemal:
e: {d::name: chararray,d::position: int,b::name: chararray,b::age: int}
g: {one: chararray,two: int,three: chararray,four: int}
2、group
B = GROUP A BY age;
---------------------------------------------------------------------- | B | group: int | A: bag({name: chararray,age: int,gpa: float}) | ---------------------------------------------------------------------- | | 18 | {(John, 18, 4.0), (Joe, 18, 3.8)} | | | 20 | {(Bill, 20, 3.9)} | ----------------------------------------------------------------------
(18,{(John,18,4.0F),(Joe,18,3.8F)})
pig udf自定义
pig支持嵌入user defined function,一个简单的udf 继承于evalFunc,通常用在filter,foreach中
- public class MyUDF extends EvalFunc<String> {
- @Override
- public String exec(Tuple input) throws IOException {
- if(input == null || input.size() ==0)
- return null;
- try {
- String val = (String) input.get(0);
- return new StringBuffer(val).append(" pig").toString();
- } catch (Exception e) {
- throw new IOException(e.getMessage());
- }
- }
- }
pig支持udf in loader and store
udf loader 需要继承于LoadFunc
udf storer 需要继承于StoreFunc
这类似于hadoop中写inputformat和outputformat
其中vertica就是写了一个DB版本的
这里贴一个简单的loader的例子:
- public class MyLoader extends LoadFunc{
- protected RecordReader recordReader = null;
- private PreparedStatement ps;
- private Connection conn;
- private final String jdbcURL;
- private final String user;
- private final String pwd;
- private final String querySql;
- private ResultSet rs;
- public MyLoader(String driver,String jdbcURL,String user,String pwd,String querySql){
- try {
- Class.forName(driver);
- } catch (Exception e) {
- // TODO: handle exception
- }
- this.jdbcURL = jdbcURL;
- this.user = user;
- this.pwd = pwd;
- this.querySql = querySql;
- }
- @Override
- public InputFormat getInputFormat() throws IOException {
- return new PigTextInputFormat();
- }
- @Override
- public Tuple getNext() throws IOException {
- // TODO 重要的读取过程
- Text val = null;
- boolean next = false;
- try {
- next = rs.next();
- } catch (Exception e) {
- // TODO: handle exception
- }
- if(!next)
- return null;
- ResultSetMetaData rsmd;
- try {
- // rsmd = result
- } catch (Exception e) {
- // TODO: handle exception
- }
- return null;
- }
- @Override
- public void prepareToRead(RecordReader arg0, PigSplit arg1)
- throws IOException {
- this.recordReader = arg0;
- }
- @Override
- public void setLocation(String arg0, Job arg1) throws IOException {
- //no idea
- }
- public ResourceSchema getSchema(String location,Job job) throws IOException{
- Configuration conf = job.getConfiguration();
- Schema schema = new Schema();
- try {
- //TODO:reader from database table
- // Connection conn = DriverManager.getConnection(this.jdbcURL, this.user, this.pwd);
- FieldSchema fieldName = new FieldSchema("name", DataType.CHARARRAY);
- FieldSchema fieldPosition = new FieldSchema("position", DataType.INTEGER);
- schema.add(fieldName);
- schema.add(fieldPosition);
- } catch (Exception e) {
- //TODO log exception
- }
- return null;
- }
- public void prepareToRead(){
- }
- }
其中getNext方法就是如何处理reader读取出的数据
getSchema可以固定读取数据的schema
setLocation可以处理输入的数据源
prepareToRead是读取数据之前,可以在此做标识,等等
pig 衍生
1.penny:
1. Penny的描述
Penny是pig的贡献项目,是pig的调试和监控工具,而且支持根据API自定义penny的监视器和协作器,已实现不同的功能;
2. Penny的总架构
Penny将监视器插入到pig的工作操作中,主要用于监视pig数据流的变化,监视器可以调用协作器,完成各种功能。
3. Penny的总类图关系
ParsePigScript负责根据用户监视器生成新计划newPlan,在ToolsPigServer中根据以前的脚本执行新计划。在执行新计划时,当监视器监视对象数据发生变化,出发监视器,运行自定义的业务,也可以将数据流变化传回协作器里处理,总类图如下:
4. Penny的使用
Penny的使用需要自定义两个类,一个类继承于监视器基类MonitorAgent,另一个继承于协作器基类Coordinator。然后根据上边类图,就可以使用PennyServer和ParsePigScript进行监控和调试
5.在pig中就可以找到penny这个贡献的源码
Vertica:
vertica是pig loader和storer的udf
附件里是vertica,来自github,和vertica的介绍使用文档
贴一篇将vertica的帖子 http://blackproof.iteye.com/blog/1791995
推荐书籍
programming pig
推荐网址
http://pig.apache.org/docs/r0.10.0/basic.html 官网
pig pen开发工具,这个我现在玩得还不熟,就不介绍了,有兴趣的可以去搜搜玩玩
我在工作中pig的使用,主要是数据的ETL,所以比较适合。在选择pig hive还是其他非hadoop架构,如redis,这还是一个需要继续尝试探索的问题。
相关推荐
《Hadoop从入门到精通》课程的PDF课件是一份全面了解和掌握Hadoop技术体系的宝贵资源。这个课程涵盖了从Hadoop的基础概念到高级应用的方方面面,旨在帮助学习者逐步提升对Hadoop的理解和实战能力。以下是根据提供的...
### Hadoop快速入门介绍 #### 一、Hadoop简介 Hadoop是一款开源软件框架,用于分布式存储和处理大型数据集。它能够在廉价的商用硬件上运行,并且具有高可靠性和可扩展性。Hadoop的核心组件包括HDFS(Hadoop ...
3. **Hadoop day03.xmind**:可能涉及Hadoop生态系统中的其他组件,如HBase(分布式数据库)、Hive(数据仓库工具)和Pig(数据分析平台),以及它们与Hadoop的交互方式。 4. **Hadoop day04.xmind**:可能深入到...
hadoop 第三版-权威指南-从入门到精通-中文pdf版本。介绍hadoop分布式文件系统,MapReduce的工作原理,并手把手教你如何构建hadoop集群,同时附带介绍了pig,hive,hbase,zookeeper,sqoop等hadoop家族的开源软件。
《Hadoop开发者入门》是一本面向初学者的指南,旨在帮助读者快速掌握Hadoop的核心概念和技术。这本书的特色是带有完整的目录书签,方便查阅,且内容可复制,非常适合学习和参考。Hadoop是一个开源的大数据处理框架,...
Hadoop生态系统包括许多相关的开源项目,如Hive(数据仓库工具)、Pig(数据分析平台)、HBase(分布式数据库)、Zookeeper(协调服务)和Spark(高速计算引擎)。这些工具与Hadoop配合,可以构建完整的大数据解决...
在进入Hadoop的世界之前,首先需要理解Hadoop是什么。...在实际项目中,你还可以根据需求扩展这个基础模板,例如引入更复杂的Mapper和Reducer逻辑,或者使用其他Hadoop生态中的组件,如Pig、Hive、Spark等。
"Hadoop入门到精通"的学习资料旨在帮助初学者掌握这一强大的框架,并逐步晋升为专家。以下是对Hadoop及其相关概念的详细解读。 一、Hadoop概述 Hadoop是由Apache基金会开发的一个开源框架,主要用于处理和存储大...
HADOOP可以与Hive、Pig、Spark等技术集成,形成大数据处理的整体解决方案。 1.4 国内外HADOOP应用案例介绍 HADOOP在国内外有广泛的应用,包括搜索引擎、社交媒体、电商平台等。例如,Facebook、Twitter、LinkedIn...
【Hadoop 入门】 Hadoop 是一个由Apache基金会开发的开源分布式计算框架,它以其高效、可扩展和容错性著称,是大数据处理领域的重要工具。本篇将从Hadoop的基本流程、应用开发以及集群配置和使用技巧三个方面进行...
6. **Hadoop生态**: Hadoop生态系统包括Pig(数据流处理)、Hive(数据仓库工具)、Spark(快速通用计算引擎)、HBase(NoSQL数据库)等,它们共同构建了一个完整的数据处理平台。 7. **数据分发与复制策略**: HDFS...
《Hadoop开发者入门专刊》是一本专门为初学者设计的指南,旨在帮助读者快速掌握Hadoop生态系统的核心概念和技术。Hadoop是Apache软件基金会开发的一个开源框架,主要用于处理和存储大量数据,尤其适合大数据分析和...
5. **Hadoop生态组件**:包括HBase(分布式数据库)、Hive(数据仓库工具)、Pig(数据分析工具)、Spark(快速通用的大数据处理框架)等,它们是如何与Hadoop协同工作的,以及各自的优缺点和应用场景。 6. **实战...
Hadoop生态包括许多其他项目,如Hive(SQL-like查询工具)、Pig(数据分析平台)、HBase(NoSQL数据库)、Spark(快速计算引擎)等,它们共同构成了强大的大数据处理平台。 八、优化与性能调优 优化Hadoop涉及到...
5. **与其他技术集成**:如何将Hadoop与Hive、Pig、Spark等大数据处理工具结合使用。 6. **Hadoop扩展**:Hadoop生态系统的其他项目,如HBase(实时数据存储)、Hue(Web界面交互)等。 总之,Hadoop是一个复杂但...
Hadoop生态系统包含了众多工具和库,如Hive(基于SQL的查询工具)、Pig(数据分析平台)、HBase(NoSQL数据库)、Spark(快速数据处理框架)等。了解这些工具如何与Hadoop配合使用,可以极大地扩展Hadoop的功能。 ...
以上内容仅为对Hadoop大数据入门必备知识的简要概述,每个知识点深入讲解都包含大量的细节和技术要点,需要系统学习和实践操作。对于初学者来说,结合Hadoop官方文档、相关书籍以及在线资源进行学习,同时在实际的...
2. **Hadoop生态系统**:除了核心的Hadoop组件,还有许多相关的项目和工具,如Hive(数据仓库工具)、Pig(数据分析平台)、HBase(NoSQL数据库)、Zookeeper(分布式协调服务)等,它们共同构建了丰富的Hadoop生态...
《大数据云计算技术系列:Hadoop之Hbase从入门到精通》 HBase,全称Hadoop Database,是一款基于Hadoop生态系统的分布式列式存储系统,旨在处理海量结构化数据。它借鉴了Google Bigtable的设计思想,但开源并适应了...