转载自http://baojie.org/blog/2013/01/27/deep-learning-tutorials/
Stanford Deep Learning wiki: http://deeplearning.stanford.edu/wiki/index.php/Main_Page
几个不错的深度学习教程,基本都有视频和演讲稿。附两篇综述文章和一副漫画。还有一些以后补充。
Jeff Dean 2013 @ Stanford
http://i.stanford.edu/infoseminar/dean.pdf
一个对DL能干什么的入门级介绍,主要涉及Google在语音识别、图像处理和自然语言处理三个方向上的一些应用。参《Spanner and Deep Learning》(2013-01-19)
Hinton 2009
A tutorial on Deep Learning
Slides http://videolectures.net/site/normal_dl/tag=52790/jul09_hinton_deeplearn.pdf
Video http://videolectures.net/jul09_hinton_deeplearn/ (3 hours)
从神经网络的背景来分析DL,为什么要有DL说得很清楚。对DL的基本模型结构也说得很清楚。十分推荐
更多Hinton的教程 http://www.cs.toronto.edu/~hinton/nntut.html
斯坦福的Deep Learning公开课(2012)
Samy Bengio, Tom Dean and Andrew Ng
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning
教学语言是Matlab。
参2011年的课程CS294A/CS294W Deep Learning and Unsupervised Feature Learning
更多的斯坦福工作: Deep Learning in Natural Language Processing
NIPS 2009 tutorial
这个介绍了DL在三个方向上的应用:tagging (parsing), semantic search, concept labeling
Ronan Collobert的Senna是一个c的深度学习实现,只有2000多行代码
ACL 2012 tutorial
Deep Learning for NLP (without Magic)
Video: http://www.youtube.com/watch?v=IF5tGEgRCTQ&list=PL4617D0E28A5781B0
Kai Yu’s Tutorial
Slides link: http://pan.baidu.com/share/link?shareid=136269&uk=2267174042[1]
Video link: KaiYu_report.mp4 (519.2 MB)
Theano Deep Learning Tutorial
这个是实战, 如何用Python实现深度学习
http://deeplearning.net/tutorial/
Survey Papers
很多,不过初学看这两篇应该就够了
Yoshua Bengio, Aaron Courville, Pascal Vincent. (2012) Representation Learning: A Review and New Perspectives
Yoshua Bengio (2009). Learning Deep Architectures for AI.
更多
- Itamar Arel, Derek C. Rose, and Thomas P. Karnowski. (2010) Deep Machine Learning – A New Frontier in Artificial Intelligence Research 这篇没什么公式,也不长,就是笼统的介绍一下
- 截至2009的一些重要文章 http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ReadingOnDeepNetworks
最后来个漫画
Deep Learning虽好,也要牢记它的局限
相关推荐
赠送jar包:deeplearning4j-nn-1.0.0-M1.1.jar; 赠送原API文档:deeplearning4j-nn-1.0.0-M1.1-javadoc.jar; 赠送源代码:deeplearning4j-nn-1.0.0-M1.1-sources.jar; 赠送Maven依赖信息文件:deeplearning4j-nn-...
### ENVI Deep Learning简介 - **深度学习定义**:深度学习是机器学习的一种高级形式,能够使系统通过多层神经网络自动发现数据的特征表示,并持续改进预测精度。 - **在遥感中的应用**:深度学习在遥感领域被用来...
learning, casting recent deep learning tools as Bayesian models without changing either the models or the optimisation. In the first part of this thesis we develop the theory for such tools, providing...
dl4j基础教程 配套视频:https://space.bilibili.com/327018681/#/
深度学习是现代人工智能领域的核心部分,它通过模拟人脑神经网络的工作原理,让计算机能够从大量...通过阅读《Deep Learning 教程中文版》的翻译版,你将能够深入了解这个激动人心的领域,并开启自己的深度学习之旅。
Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow (Machine Learning in Python) by LazyProgrammer English | March ...
Exploring an advanced state of the art deep learning models and its applications using Popular python libraries like Keras, Tensorflow, and Pytorch Key Features • A strong foundation on neural ...
Deep Learning: Practical Neural Networks with Java by Yusuke Sugomori English | 8 Jun. 2017 | ASIN: B071GC77N9 | 1057 Pages | AZW3 | 20.28 MB Build and run intelligent applications by leveraging key ...
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then ...
deeplearning学习教程英文版是一本全面讲解深度学习的教材,提供了对深度学习各个知识点的详细介绍,并且辅以Python编程示例。本书主要覆盖了深度学习的基础知识、模型构建、编程实践和一些进阶技巧。下面详细阐释书...
R Deep Learning Cookbook by Dr. PKS Prakash English | 4 Aug. 2017 | ISBN: 1787121089 | ASIN: B071NDMWN2 | 288 Pages | AZW3 | 6.91 MB Powerful, independent recipes to build deep learning models in ...
Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-...
【作品名称】:基于DeepLearning4j框架提供的lstm神经网络实现对车流量预测 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目...
TensorFlow Deep Learning Projects: 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning Leverage the power of Tensorflow to design deep learning ...
deep learning has taken the world by surprise, driving rapid progress in fields as diverse as computer vision, natural language processing, automatic speech recognition, reinforcement learning, and ...
Chapter 1 starts with the relationship between Machine Learning and Deep Learning, followed by problem solving strategies and fundamental limitations of Machine Learning. The detailed techniques are ...