- 浏览: 570228 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (267)
- 随笔 (4)
- Spring (13)
- Java (61)
- HTTP (3)
- Windows (1)
- CI(Continuous Integration) (3)
- Dozer (1)
- Apache (11)
- DB (7)
- Architecture (41)
- Design Patterns (11)
- Test (5)
- Agile (1)
- ORM (3)
- PMP (2)
- ESB (2)
- Maven (5)
- IDE (1)
- Camel (1)
- Webservice (3)
- MySQL (6)
- CentOS (14)
- Linux (19)
- BI (3)
- RPC (2)
- Cluster (9)
- NoSQL (7)
- Oracle (25)
- Loadbalance (7)
- Web (5)
- tomcat (1)
- freemarker (1)
- 制造 (0)
最新评论
-
panamera:
如果设置了连接需要密码,Dynamic Broker-Clus ...
ActiveMQ 集群配置 -
panamera:
请问你的最后一种模式Broker-C节点是不是应该也要修改持久 ...
ActiveMQ 集群配置 -
maosheng:
longshao_feng 写道楼主使用 文件共享 模式的ma ...
ActiveMQ 集群配置 -
longshao_feng:
楼主使用 文件共享 模式的master-slave,produ ...
ActiveMQ 集群配置 -
tanglanwen:
感触很深,必定谨记!
少走弯路的十条忠告
前序
单实例Singleton设计模式可能是被讨论和使用的最广泛的一个设计模式了,这可能也是面试中问得最多的一个设计模式了。这个设计模式主要目的是想在整个系统中只能出现一个类的实例。这样做当然是有必然的,比如你的软件的全局配置信息,或者是一个Factory,或是一个主控类,等等。你希望这个类在整个系统中只能出现一个实例,本文会带着你深入整个Singleton的世界。
首先,我将直接给出一个Singleton的简单实现,我们姑且把这具版本叫做1.0版
// version 1.0
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
singleton= new Singleton();
}
return singleton;
}
}
在上面的实例中,我想说明下面几个Singleton的特点:
私有(private)的构造函数,表明这个类是不可能形成实例了。这主要是怕这个类会有多个实例。
即然这个类是不可能形成实例,那么,我们需要一个静态的方式让其形成实例:getInstance()。注意这个方法是在new自己,因为其可以访问私有的构造函数,所以他是可以保证实例被创建出来的。
在getInstance()中,先做判断是否已形成实例,如果已形成则直接返回,否则创建实例。
所形成的实例保存在自己类中的私有成员中。
我们取实例时,只需要使用Singleton.getInstance()就行了。
当然,如果你觉得知道了上面这些事情后就学成了,事情远远没有那么简单。
上面的这个程序存在比较严重的问题,因为是全局性的实例,所以,在多线程情况下,所有的全局共享的东西都会变得非常的危险,这个也一样,在多线程情况下,如果多个线程同时调用getInstance()的话,那么,可能会有多个进程同时通过 (singleton== null)的条件检查,于是,多个实例就创建出来,并且很可能造成内存泄露问题。嗯,熟悉多线程的你一定会说——“我们需要线程互斥或同步”,没错,我们需要这个事情,于是我们的Singleton升级成1.1版,如下所示:
// version 1.1
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
synchronized (Singleton.class) {
singleton= new Singleton();
}
}
return singleton;
}
}
嗯,使用了Java的synchronized方法,看起来不错哦。应该没有问题了吧?!错!这还是有问题!为什么呢?前面已经说过,如果有多个线程同时通过(singleton== null)的条件检查(因为他们并行运行),虽然我们的synchronized方法会帮助我们同步所有的线程,让我们并行线程变成串行的一个一个去new,那不还是一样的吗?同样会出现很多实例。嗯,确实如此!看来,还得把那个判断(singleton== null)条件也同步起来。于是,我们的Singleton再次升级成1.2版本,如下所示:
// version 1.2
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
synchronized (Singleton.class)
{
if (singleton== null)
{
singleton= new Singleton();
}
}
return singleton;
}
}
不错不错,看似很不错了。在多线程下应该没有什么问题了,不是吗?的确是这样的,1.2版的Singleton在多线程下的确没有问题了,因为我们同步了所有的线程。只不过嘛……,什么?!还不行?!是的,还是有点小问题,我们本来只是想让new这个操作并行就可以了,现在,只要是进入getInstance()的线程都得同步啊,注意,创建对象的动作只有一次,后面的动作全是读取那个成员变量,这些读取的动作不需要线程同步啊。这样的作法感觉非常极端啊,为了一个初始化的创建动作,居然让我们达上了所有的读操作,严重影响后续的性能啊!
还得改!嗯,看来,在线程同步前还得加一个(singleton== null)的条件判断,如果对象已经创建了,那么就不需要线程的同步了。OK,下面是1.3版的Singleton。
// version 1.3
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
synchronized (Singleton.class)
{
if (singleton== null)
{
singleton= new Singleton();
}
}
}
return singleton;
}
}
感觉代码开始变得有点罗嗦和复杂了,不过,这可能是最不错的一个版本了,这个版本又叫“双重检查”Double-Check。下面是说明:
第一个条件是说,如果实例创建了,那就不需要同步了,直接返回就好了。
不然,我们就开始同步线程。
第二个条件是说,如果被同步的线程中,有一个线程创建了对象,那么别的线程就不用再创建了。
相当不错啊,干得非常漂亮!请大家为我们的1.3版起立鼓掌!
Singleton的其它问题
怎么?还有问题?!当然还有,请记住下面这条规则——“无论你的代码写得有多好,其只能在特定的范围内工作,超出这个范围就要出Bug了”,这是“陈式第一定理”,呵呵。你能想一想还有什么情况会让这个我们上面的代码出问题吗?还是让我们来看看下面的一些反例和一些别的事情的讨论
其一、Class Loader。不知道你对Java的Class Loader熟悉吗?“类装载器”?!这是Java动态性的核心。顾名思义,类装载器是用来把类(class)装载进JVM的。JVM规范定义了两种类型的类装载器:启动内装载器(bootstrap)和用户自定义装载器(user-defined class loader)。 在一个JVM中可能存在多个ClassLoader,每个ClassLoader拥有自己的NameSpace。一个ClassLoader只能拥有一个class对象类型的实例,但是不同的ClassLoader可能拥有相同的class对象实例,这时可能产生致命的问题。如ClassLoaderA,装载了类A的类型实例A1,而ClassLoaderB,也装载了类A的对象实例A2。逻辑上讲A1=A2,但是由于A1和A2来自于不同的ClassLoader,它们实际上是完全不同的,如果A中定义了一个静态变量c,则c在不同的ClassLoader中的值是不同的。
于是,如果咱们的Singleton 1.3版本如果面对着多个Class Loader会怎么样?呵呵,多个实例同样会被多个Class Loader创建出来,当然,这个有点牵强,不过他确实存在。难道我们还要整出个1.4版吗?可是,我们怎么可能在我的Singleton类中操作Class Loader啊?是的,你根本不可能。在这种情况下,你能做的只有是——“保证多个Class Loader不会装载同一个Singleton”。
其二、序例化。如果我们的这个Singleton类是一个关于我们程序配置信息的类。我们需要它有序列化的功能,那么,当反序列化的时候,我们将无法控制别人不多次反序列化。不过,我们可以利用一下Serializable接口的readResolve()方法,比如:
public class Singleton implements Serializable
{
......
......
protected Object readResolve()
{
return getInstance();
}
}
其三、多个Java虚拟机。如果我们的程序运行在多个Java的虚拟机中。什么?多个虚拟机?这是一种什么样的情况啊。嗯,这种情况是有点极端,不过还是可能出现,比如EJB或RMI之流的东西。要在这种环境下避免多实例,看来只能通过良好的设计或非技术来解决了。
其四,volatile变量。关于volatile这个关键字所声明的变量可以被看作是一种 “程度较轻的同步synchronized”;与 synchronized 块相比,volatile 变量所需的编码较少,并且运行时开销也较少,但是它所能实现的功能也仅是synchronized的一部分。当然,如前面所述,我们需要的Singleton只是在创建的时候线程同步,而后面的读取则不需要同步。所以,volatile变量并不能帮助我们即能解决问题,又有好的性能。而且,这种变量只能在JDK 1.5+版后才能使用。
其五、关于继承。是的,继承于Singleton后的子类也有可能造成多实例的问题。不过,因为我们早把Singleton的构造函数声明成了私有的,所以也就杜绝了继承这种事情。
单实例Singleton设计模式可能是被讨论和使用的最广泛的一个设计模式了,这可能也是面试中问得最多的一个设计模式了。这个设计模式主要目的是想在整个系统中只能出现一个类的实例。这样做当然是有必然的,比如你的软件的全局配置信息,或者是一个Factory,或是一个主控类,等等。你希望这个类在整个系统中只能出现一个实例,本文会带着你深入整个Singleton的世界。
首先,我将直接给出一个Singleton的简单实现,我们姑且把这具版本叫做1.0版
// version 1.0
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
singleton= new Singleton();
}
return singleton;
}
}
在上面的实例中,我想说明下面几个Singleton的特点:
私有(private)的构造函数,表明这个类是不可能形成实例了。这主要是怕这个类会有多个实例。
即然这个类是不可能形成实例,那么,我们需要一个静态的方式让其形成实例:getInstance()。注意这个方法是在new自己,因为其可以访问私有的构造函数,所以他是可以保证实例被创建出来的。
在getInstance()中,先做判断是否已形成实例,如果已形成则直接返回,否则创建实例。
所形成的实例保存在自己类中的私有成员中。
我们取实例时,只需要使用Singleton.getInstance()就行了。
当然,如果你觉得知道了上面这些事情后就学成了,事情远远没有那么简单。
上面的这个程序存在比较严重的问题,因为是全局性的实例,所以,在多线程情况下,所有的全局共享的东西都会变得非常的危险,这个也一样,在多线程情况下,如果多个线程同时调用getInstance()的话,那么,可能会有多个进程同时通过 (singleton== null)的条件检查,于是,多个实例就创建出来,并且很可能造成内存泄露问题。嗯,熟悉多线程的你一定会说——“我们需要线程互斥或同步”,没错,我们需要这个事情,于是我们的Singleton升级成1.1版,如下所示:
// version 1.1
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
synchronized (Singleton.class) {
singleton= new Singleton();
}
}
return singleton;
}
}
嗯,使用了Java的synchronized方法,看起来不错哦。应该没有问题了吧?!错!这还是有问题!为什么呢?前面已经说过,如果有多个线程同时通过(singleton== null)的条件检查(因为他们并行运行),虽然我们的synchronized方法会帮助我们同步所有的线程,让我们并行线程变成串行的一个一个去new,那不还是一样的吗?同样会出现很多实例。嗯,确实如此!看来,还得把那个判断(singleton== null)条件也同步起来。于是,我们的Singleton再次升级成1.2版本,如下所示:
// version 1.2
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
synchronized (Singleton.class)
{
if (singleton== null)
{
singleton= new Singleton();
}
}
return singleton;
}
}
不错不错,看似很不错了。在多线程下应该没有什么问题了,不是吗?的确是这样的,1.2版的Singleton在多线程下的确没有问题了,因为我们同步了所有的线程。只不过嘛……,什么?!还不行?!是的,还是有点小问题,我们本来只是想让new这个操作并行就可以了,现在,只要是进入getInstance()的线程都得同步啊,注意,创建对象的动作只有一次,后面的动作全是读取那个成员变量,这些读取的动作不需要线程同步啊。这样的作法感觉非常极端啊,为了一个初始化的创建动作,居然让我们达上了所有的读操作,严重影响后续的性能啊!
还得改!嗯,看来,在线程同步前还得加一个(singleton== null)的条件判断,如果对象已经创建了,那么就不需要线程的同步了。OK,下面是1.3版的Singleton。
// version 1.3
public class Singleton
{
private static final Singleton singleton = null;
private Singleton()
{
}
public static Singleton getInstance()
{
if (singleton== null)
{
synchronized (Singleton.class)
{
if (singleton== null)
{
singleton= new Singleton();
}
}
}
return singleton;
}
}
感觉代码开始变得有点罗嗦和复杂了,不过,这可能是最不错的一个版本了,这个版本又叫“双重检查”Double-Check。下面是说明:
第一个条件是说,如果实例创建了,那就不需要同步了,直接返回就好了。
不然,我们就开始同步线程。
第二个条件是说,如果被同步的线程中,有一个线程创建了对象,那么别的线程就不用再创建了。
相当不错啊,干得非常漂亮!请大家为我们的1.3版起立鼓掌!
Singleton的其它问题
怎么?还有问题?!当然还有,请记住下面这条规则——“无论你的代码写得有多好,其只能在特定的范围内工作,超出这个范围就要出Bug了”,这是“陈式第一定理”,呵呵。你能想一想还有什么情况会让这个我们上面的代码出问题吗?还是让我们来看看下面的一些反例和一些别的事情的讨论
其一、Class Loader。不知道你对Java的Class Loader熟悉吗?“类装载器”?!这是Java动态性的核心。顾名思义,类装载器是用来把类(class)装载进JVM的。JVM规范定义了两种类型的类装载器:启动内装载器(bootstrap)和用户自定义装载器(user-defined class loader)。 在一个JVM中可能存在多个ClassLoader,每个ClassLoader拥有自己的NameSpace。一个ClassLoader只能拥有一个class对象类型的实例,但是不同的ClassLoader可能拥有相同的class对象实例,这时可能产生致命的问题。如ClassLoaderA,装载了类A的类型实例A1,而ClassLoaderB,也装载了类A的对象实例A2。逻辑上讲A1=A2,但是由于A1和A2来自于不同的ClassLoader,它们实际上是完全不同的,如果A中定义了一个静态变量c,则c在不同的ClassLoader中的值是不同的。
于是,如果咱们的Singleton 1.3版本如果面对着多个Class Loader会怎么样?呵呵,多个实例同样会被多个Class Loader创建出来,当然,这个有点牵强,不过他确实存在。难道我们还要整出个1.4版吗?可是,我们怎么可能在我的Singleton类中操作Class Loader啊?是的,你根本不可能。在这种情况下,你能做的只有是——“保证多个Class Loader不会装载同一个Singleton”。
其二、序例化。如果我们的这个Singleton类是一个关于我们程序配置信息的类。我们需要它有序列化的功能,那么,当反序列化的时候,我们将无法控制别人不多次反序列化。不过,我们可以利用一下Serializable接口的readResolve()方法,比如:
public class Singleton implements Serializable
{
......
......
protected Object readResolve()
{
return getInstance();
}
}
其三、多个Java虚拟机。如果我们的程序运行在多个Java的虚拟机中。什么?多个虚拟机?这是一种什么样的情况啊。嗯,这种情况是有点极端,不过还是可能出现,比如EJB或RMI之流的东西。要在这种环境下避免多实例,看来只能通过良好的设计或非技术来解决了。
其四,volatile变量。关于volatile这个关键字所声明的变量可以被看作是一种 “程度较轻的同步synchronized”;与 synchronized 块相比,volatile 变量所需的编码较少,并且运行时开销也较少,但是它所能实现的功能也仅是synchronized的一部分。当然,如前面所述,我们需要的Singleton只是在创建的时候线程同步,而后面的读取则不需要同步。所以,volatile变量并不能帮助我们即能解决问题,又有好的性能。而且,这种变量只能在JDK 1.5+版后才能使用。
其五、关于继承。是的,继承于Singleton后的子类也有可能造成多实例的问题。不过,因为我们早把Singleton的构造函数声明成了私有的,所以也就杜绝了继承这种事情。
发表评论
-
java 类的加载 以及 ClassLoader
2020-04-16 09:43 500Class Loader 类加载器: 类加载器负责加载 ... -
Stack 的实现原理深入剖析
2020-04-06 13:26 499Stack 介绍: Stack是栈。 ... -
Vector 的实现原理深入剖析
2020-04-06 13:17 373Vector介绍: Vector 是矢量队列,它是JDK1. ... -
JDK 分析工具
2020-04-05 17:30 403常用分析工具: jps:显示指定系统中所有的HotSpot虚 ... -
二叉树的深度优先遍历和广度优先遍历
2020-03-10 09:33 637概述: 1、深度优先遍历(Depth-First-Sear ... -
Hashtable 的实现原理深入剖析
2020-02-18 20:59 595一、Hashtable的基本方法: 1、定义: HashT ... -
jdk 1.8 新特性
2020-02-17 13:43 4031、default关键字 ... -
Java IO 架构
2019-11-11 16:39 360主要两类: 磁盘I/O 网络I/O 基于字节 ... -
Java 数据结构与算法
2019-04-03 10:25 535程序=数据结构+算法 ... -
Java语言异常(Exception)
2018-10-09 11:40 560异常,是Java中非常常用 ... -
Java并发问题--乐观锁与悲观锁以及乐观锁的一种实现方式-CAS
2018-08-17 09:47 1490首先介绍一些乐观锁与 ... -
Java 高性能编程注意事项
2016-11-17 09:55 6551. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担, ... -
Netty 解析
2017-03-07 13:47 1234Linux网络IO模型: Linux ... -
2016年Java 面试题总结
2016-01-18 13:34 54810多线程、并发及线程的基础问题: 1)Java 中能创建 vo ... -
java 内存模型
2015-12-29 13:44 827JAVA内存模型: Java内存 ... -
JVM 深入剖析
2015-12-29 12:51 1106JVM是JAVA虚拟机(JAVA Virtual Machin ... -
Java 并发编程_Synchronized
2015-12-16 12:42 883硬件的效率和一致性: 由于计算机的运算速度和它的存储和通讯子 ... -
Java 并发编程_Volatile
2015-12-15 13:42 629术语定义: 共享变量:在多个线程之间能够被共享的变量被称为共 ... -
Java 并发编程_ConcurrentLinkedQueue
2015-12-15 13:32 923ConcurrentLinkedQueue 的分析和使用: ... -
Java 并发编程_ConcurrentHashMap
2015-11-10 11:30 842ConcurrentHashMap 的分析和 ...
相关推荐
"基于Comsol的采空区阴燃现象研究:速度、氧气浓度、瓦斯浓度与温度分布的二维模型分析",comsol采空区阴燃。 速度,氧气浓度,瓦斯浓度及温度分布。 二维模型。 ,comsol; 采空区; 阴燃; 速度; 氧气浓度; 瓦斯浓度; 温度分布; 二维模型;,"COMSOL模拟采空区阴燃:速度、浓度与温度分布的二维模型研究"
安全驱动的边云数据协同策略研究.pdf
MATLAB代码实现电-气-热综合能源系统耦合优化调度模型:精细电网、气网与热网协同优化,保姆级注释参考文档详可查阅。,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细,可联系我查阅 仿真平台:MATLAB YALMIP+cplex gurobi 主要内容:代码主要做的是一个考虑电网、热网以及气网耦合调度的综合能源系统优化调度模型,考虑了电网与气网,电网与热网的耦合,算例系统中,电网部分为10机39节点的综合能源系统,气网部分为比利时20节点的配气网络,潮流部分电网是用了直流潮流,气网部分也进行了线性化的操作处理,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均有可靠来源 ,关键词:MATLAB代码; 电-气-热综合能源系统; 耦合优化调度; 电网; 热网; 气网; 潮流; 直流潮流; 线性化处理; 保姆级注释; 人性化模块子程序; 可靠数据来源。,MATLAB代码:电-气-热综合能源系统耦合优化调度模型(保姆级注释,数据来源可靠)
内容概要:本文详细探讨了人工智能(AI)对就业市场的深远影响及其发展趋势。首先介绍了到2027年,44%的工人核心技能将受技术变革尤其是AI影响的事实,并提及自动化可能取代部分工作的现象。其次指出虽然某些职位面临风险,但也带来了全新的职业机遇与现有角色改进的可能性,关键在于人类要学会借助AI释放自身潜力并培养软实力,以适应快速发展的科技需求。再者,强调终身学习理念下企业和教育培训须革新教学手段与评估机制,以便紧跟AI进化速率,为个体和社会持续注入新动力。最后提到了教育机构应当加快调整步伐以匹配技术变革的速度,并利用AI实现个性化的教育,进而提升学习者的适应能力和解决问题的能力。 适用人群:政策制定者、企业管理层、在职人员及教育工作者,还有广大学生群体均能从中获得启示。 使用场景及目标:面向关注未来职场动向及教育发展方向的专业人士,提供前瞻性思考角度,助力各界积极规划职业生涯路径或调整教育资源分配策略。 其他说明:本文综合多位行业领袖的观点展开讨论,旨在唤起社会各界共同思考AI带来的变革及对策,而非单方面渲染危机感。
2025最新空调与制冷作业考试题及答案.doc
2025最新初级电工证考试题及答案.docx
飞剪PLC控制系统——采用西门子S7-200SMART和触摸屏实现智能化操控及图纸详述,飞锯追剪程序,PLC和触摸屏采用西门子200smart,包含图纸,触摸屏程序和PLC程序。 ,核心关键词:飞锯追剪程序; 西门子200smart; PLC程序; 触摸屏程序; 图纸; 控制系统。,"西门子200smart飞锯追剪系统程序包:含图纸、PLC与触摸屏程序"
使用PyQt6制作的Python应用程序。
三相桥式整流电路双闭环控制策略:电压外环与电流内环协同优化研究,三相桥式整流电路双闭环控制 电流内环 电压外环(也有开环控制) 采用电压电流双闭环控制,在电压、电流控制电路中,电压单环控制易于设计和分析,但是响应速度慢,无限流功能。 而电流环能增强电路稳定性、响应速度快。 三相桥式全控整流电路由整流变压器、阴极相连接的晶闸管(VT1, VT3, VT5)、阳极相连接的晶闸管(VT4, VT6, VT2)、负载、触发器和同步环节组成(如图1),6个晶闸管依次相隔60°触发,将电源交流电整流为直流电。 matlab仿真模型(开闭环都有)控制效果良好,可写报告。 ,三相桥式整流电路;双闭环控制;电流内环;电压外环;开环控制;MATLAB仿真模型。,基于双闭环控制的电压电流三相整流技术分析与Matlab仿真实现
MATLAB四旋翼仿真PID控制:从入门到精通的手把手教学,含QAV方法、模型代码、Simulink布局思路及详细图文说明,MATLAB四旋翼仿真 PID控制,有完全对应的说明文档,专门为初级学习者提供。 不用问在不在,直接拿即可。 亮点: 拥有和模型完全对应的讲解文档,相当于手把手教学。 内容包括: 1.QAV详细方法 2.模型及代码 3.模型2(提供simulink排版布局思路) 4.相关图片 5.使用备注 ,核心关键词:MATLAB四旋翼仿真; PID控制; 完全对应说明文档; 初级学习者; QAV详细方法; 模型及代码; simulink排版布局思路; 相关图片; 使用备注。,"MATLAB四旋翼仿真教程:PID控制详解与手把手教学"
定子磁链控制下的直接转矩控制系统MATLAB仿真研究及结果分析报告,基于定子磁链控制的直接转矩控制系统 MATLAB SIMULINK仿真模型(2018b)及说明报告,仿真结果良好。 报告第一部分讨论异步电动机的理论基础和数学模型,第二部分介绍直接转矩控制的具体原理,第三部分对调速系统中所用到的脉宽调制技术CFPWM、SVPWM进行了介绍,第四部分介绍了MATLAB仿真模型的搭建过程,第五部分对仿真结果进行了展示及讨论。 ,关键词:定子磁链控制;直接转矩控制系统;MATLAB SIMULINK仿真模型;异步电动机理论基础;数学模型;直接转矩控制原理;脉宽调制技术CFPWM;SVPWM;仿真结果。,基于MATLAB的异步电机直接转矩控制仿真研究报告
2025中小学教师编制考试教育理论基础知识必刷题库及答案.pptx
Python游戏编程源码-糖果消消消.zip
三相PWM整流器双闭环控制:电压外环电流内环的SVPWM调制策略及其代码编写详解——动态稳态特性优越的技术参考。,三相PWM整流器双闭环控制,电压外环,电流内环,PLL。 采用SVPWM调制,代码编写。 动态和稳态特性较好,可提供参考资料 ,三相PWM整流器;双闭环控制;电压外环;电流内环;PLL调制;SVPWM调制;动态特性;稳态特性;参考资料,三相PWM整流器双闭环SVPWM调制策略:稳态与动态特性优化参考指南
永磁同步电机滑膜观测器参数识别与仿真研究:转动惯量、阻尼系数及负载转矩的Matlab Simulink仿真分析文章及文档说明,永磁同步电机 滑膜观测器参数识别Matlab simulink仿真 包括转动惯量 阻尼系数 负载转矩 波形很好 跟踪很稳 包含仿真文件说明文档以及文章 ,关键词:永磁同步电机;滑膜观测器;参数识别;Matlab simulink仿真;转动惯量;阻尼系数;负载转矩;波形质量;跟踪稳定性;仿真文件;说明文档;文章。,基于Matlab Simulink仿真的永磁同步电机滑膜观测器参数识别及性能分析
基于永磁涡流的电梯缓冲结构设计.pdf
Python自动化办公源码-28 Python爬虫爬取网站的指定文章
MATLAB下的安全强化学习:利用Constraint Enforcement块训练代理实现目标接近任务,MATLAB代码:安全 强化学习 关键词:safe RL 仿真平台:MATLAB 主要内容:此代码展示了如何使用 Constraint Enforcement 块来训练强化学习 (RL) 代理。 此块计算最接近受约束和动作边界的代理输出的动作的修改控制动作。 训练强化学习代理需要 Reinforcement Learning Toolbox 。 在此示例中,代理的目标是使绿球尽可能靠近红球不断变化的目标位置。 具体步骤为创建用于收集数据的环境和代理,学习约束函数,使用约束强制训练代理,在没有约束执行的情况下训练代理。 ,核心关键词:safe RL; MATLAB代码; Constraint Enforcement 块; 强化学习代理; 绿球; 红球目标位置; 数据收集环境; 约束函数; 约束强制训练; 无约束执行训练。,MATLAB中安全强化学习训练的约束强化代理实现
基于EtherCAT总线网络的锂电池激光制片机控制系统,融合欧姆龙NX系列与威伦通触摸屏的智能制造方案。,锂电池激光模切机 欧姆龙NX1P2-1140DT,威伦通触摸屏,搭载从机扩展机架控制,I输入输出IO模块模拟量模块读取控制卷径计算 汇川IS620N总线伺服驱动器7轴控制,总线纠偏器控制 全自动锂电池激光制片机,整机采用EtherCAT总线网络节点控制, 伺服凸轮同步运动,主轴虚轴控制应用,卷径计算,速度计算,放卷张力控制。 触摸屏设计伺服驱动器报警代码,MC总线报警代码,欧姆龙伺服报警代码 张力摆臂控制,PID控制,等等 触摸屏产量统计,触摸屏故障统计,触摸屏与PLC对接信息交互,触摸屏多账户使用,多产品配方程序,优秀的触摸屏模板。 NX在收放卷控制的设计 欧姆龙NX系列实际项目程序+威纶触摸屏程序+新能源锂电设备 涵盖威纶通人机,故障记录功能,st+梯形图+FB块,注释齐全。 ,"新能源锂电池激光模切机:欧姆龙NX与威纶通触摸屏的智能控制与信息交互系统"
2025装载机理论考试试题库(含答案).pptx