`
ssxxjjii
  • 浏览: 956605 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Redis安装整理(window平台和Linux平台)

 
阅读更多
window平台Redis安装 

redis windows安装文件下载地址:http://code.google.com/p/servicestack/wiki/RedisWindowsDownload#Download_32bit_Cygwin_builds_for_Windows
我选择的redis为最新版的安装文件,见下图: 
 
  
Redis安装文件解压后,有以下几个文件。见下图 
 
redis-server.exe:服务程序 
redis-check-dump.exe:本地数据库检查 
redis-check-aof.exe:更新日志检查 
redis-benchmark.exe:性能测试,用以模拟同时由N个客户端发送M个 SETs/GETs 查询 (类似于 Apache 的ab 工具). 

在解压好redis的安装文件到E:\根目录后,还需要在redis根目录增加一个redis的配置文件redis.conf,文件具体内容附件中有,不过这里我仍然把配置文件的内容贴上来: 
Java代码  收藏代码
  1. # Redis configuration file example  
  2.   
  3. # By default Redis does not run as a daemon. Use 'yes' if you need it.  
  4. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.  
  5. daemonize no  
  6.   
  7. # When run as a daemon, Redis write a pid file in /var/run/redis.pid by default.  
  8. # You can specify a custom pid file location here.  
  9. pidfile /var/run/redis.pid  
  10.   
  11. # Accept connections on the specified port, default is 6379  
  12. port 6379  
  13.   
  14. # If you want you can bind a single interfaceif the bind option is not  
  15. # specified all the interfaces will listen for connections.  
  16. #  
  17. # bind 127.0.0.1  
  18.   
  19. # Close the connection after a client is idle for N seconds (0 to disable)  
  20. timeout 300  
  21.   
  22. # Set server verbosity to 'debug'  
  23. # it can be one of:  
  24. # debug (a lot of information, useful for development/testing)  
  25. # notice (moderately verbose, what you want in production probably)  
  26. # warning (only very important / critical messages are logged)  
  27. loglevel debug  
  28.   
  29. # Specify the log file name. Also 'stdout' can be used to force  
  30. # the demon to log on the standard output. Note that if you use standard  
  31. # output for logging but daemonize, logs will be sent to /dev/null  
  32. logfile stdout  
  33.   
  34. # Set the number of databases. The default database is DB 0, you can select  
  35. # a different one on a per-connection basis using SELECT <dbid> where  
  36. # dbid is a number between 0 and 'databases'-1  
  37. databases 16  
  38.   
  39. ################################ SNAPSHOTTING  #################################  
  40. #  
  41. # Save the DB on disk:  
  42. #  
  43. #   save <seconds> <changes>  
  44. #  
  45. #   Will save the DB if both the given number of seconds and the given  
  46. #   number of write operations against the DB occurred.  
  47. #  
  48. #   In the example below the behaviour will be to save:  
  49. #   after 900 sec (15 min) if at least 1 key changed  
  50. #   after 300 sec (5 min) if at least 10 keys changed  
  51. #   after 60 sec if at least 10000 keys changed  
  52. save 900 1  
  53. save 300 10  
  54. save 60 10000  
  55.   
  56. # Compress string objects using LZF when dump .rdb databases?  
  57. # For default that's set to 'yes' as it's almost always a win.  
  58. # If you want to save some CPU in the saving child set it to 'no' but  
  59. # the dataset will likely be bigger if you have compressible values or keys.  
  60. rdbcompression yes  
  61.   
  62. # The filename where to dump the DB  
  63. dbfilename dump.rdb  
  64.   
  65. # For default save/load DB in/from the working directory  
  66. # Note that you must specify a directory not a file name.  
  67. dir ./  
  68.   
  69. ################################# REPLICATION #################################  
  70.   
  71. # Master-Slave replication. Use slaveof to make a Redis instance a copy of  
  72. # another Redis server. Note that the configuration is local to the slave  
  73. # so for example it is possible to configure the slave to save the DB with a  
  74. # different interval, or to listen to another port, and so on.  
  75. #  
  76. # slaveof <masterip> <masterport>  
  77.   
  78. # If the master is password protected (using the "requirepass" configuration  
  79. # directive below) it is possible to tell the slave to authenticate before  
  80. # starting the replication synchronization process, otherwise the master will  
  81. # refuse the slave request.  
  82. #  
  83. # masterauth <master-password>  
  84.   
  85. ################################## SECURITY ###################################  
  86.   
  87. # Require clients to issue AUTH <PASSWORD> before processing any other  
  88. # commands.  This might be useful in environments in which you do not trust  
  89. # others with access to the host running redis-server.  
  90. #  
  91. # This should stay commented out for backward compatibility and because most  
  92. # people do not need auth (e.g. they run their own servers).  
  93. #  
  94. # requirepass foobared  
  95.   
  96. ################################### LIMITS ####################################  
  97.   
  98. # Set the max number of connected clients at the same time. By default there  
  99. # is no limit, and it's up to the number of file descriptors the Redis process  
  100. # is able to open. The special value '0' means no limts.  
  101. # Once the limit is reached Redis will close all the new connections sending  
  102. # an error 'max number of clients reached'.  
  103. #  
  104. # maxclients 128  
  105.   
  106. # Don't use more memory than the specified amount of bytes.  
  107. # When the memory limit is reached Redis will try to remove keys with an  
  108. # EXPIRE set. It will try to start freeing keys that are going to expire  
  109. # in little time and preserve keys with a longer time to live.  
  110. # Redis will also try to remove objects from free lists if possible.  
  111. #  
  112. # If all this fails, Redis will start to reply with errors to commands  
  113. # that will use more memory, like SET, LPUSH, and so on, and will continue  
  114. # to reply to most read-only commands like GET.  
  115. #  
  116. # WARNING: maxmemory can be a good idea mainly if you want to use Redis as a  
  117. 'state' server or cache, not as a real DB. When Redis is used as a real  
  118. # database the memory usage will grow over the weeks, it will be obvious if  
  119. # it is going to use too much memory in the long run, and you'll have the time  
  120. # to upgrade. With maxmemory after the limit is reached you'll start to get  
  121. # errors for write operations, and this may even lead to DB inconsistency.  
  122. #  
  123. # maxmemory <bytes>  
  124.   
  125. ############################## APPEND ONLY MODE ###############################  
  126.   
  127. # By default Redis asynchronously dumps the dataset on disk. If you can live  
  128. # with the idea that the latest records will be lost if something like a crash  
  129. # happens this is the preferred way to run Redis. If instead you care a lot  
  130. # about your data and don't want to that a single record can get lost you should  
  131. # enable the append only mode: when this mode is enabled Redis will append  
  132. # every write operation received in the file appendonly.log. This file will  
  133. # be read on startup in order to rebuild the full dataset in memory.  
  134. #  
  135. # Note that you can have both the async dumps and the append only file if you  
  136. # like (you have to comment the "save" statements above to disable the dumps).  
  137. # Still if append only mode is enabled Redis will load the data from the  
  138. # log file at startup ignoring the dump.rdb file.  
  139. #  
  140. # The name of the append only file is "appendonly.log"  
  141. #  
  142. # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append  
  143. # log file in background when it gets too big.  
  144.   
  145. appendonly no  
  146.   
  147. # The fsync() call tells the Operating System to actually write data on disk  
  148. # instead to wait for more data in the output buffer. Some OS will really flush  
  149. # data on disk, some other OS will just try to do it ASAP.  
  150. #  
  151. # Redis supports three different modes:  
  152. #  
  153. # no: don't fsync, just let the OS flush the data when it wants. Faster.  
  154. # always: fsync after every write to the append only log . Slow, Safest.  
  155. # everysec: fsync only if one second passed since the last fsync. Compromise.  
  156. #  
  157. # The default is "always" that's the safer of the options. It's up to you to  
  158. # understand if you can relax this to "everysec" that will fsync every second  
  159. # or to "no" that will let the operating system flush the output buffer when  
  160. # it want, for better performances (but if you can live with the idea of  
  161. # some data loss consider the default persistence mode that's snapshotting).  
  162.   
  163. appendfsync always  
  164. # appendfsync everysec  
  165. # appendfsync no  
  166.   
  167. ############################### ADVANCED CONFIG ###############################  
  168.   
  169. # Glue small output buffers together in order to send small replies in a  
  170. # single TCP packet. Uses a bit more CPU but most of the times it is a win  
  171. # in terms of number of queries per second. Use 'yes' if unsure.  
  172. glueoutputbuf yes  
  173.   
  174. # Use object sharing. Can save a lot of memory if you have many common  
  175. # string in your dataset, but performs lookups against the shared objects  
  176. # pool so it uses more CPU and can be a bit slower. Usually it's a good  
  177. # idea.  
  178. #  
  179. # When object sharing is enabled (shareobjects yes) you can use  
  180. # shareobjectspoolsize to control the size of the pool used in order to try  
  181. # object sharing. A bigger pool size will lead to better sharing capabilities.  
  182. # In general you want this value to be at least the double of the number of  
  183. # very common strings you have in your dataset.  
  184. #  
  185. # WARNING: object sharing is experimental, don't enable this feature  
  186. # in production before of Redis 1.0-stable. Still please try this feature in  
  187. # your development environment so that we can test it better.  
  188. # shareobjects no  
  189. # shareobjectspoolsize 1024  


将附件中的redis_conf.rar解压下来放到redis的根目录中即可。到此,redis的安装已经完毕。下面开始使用redis数据库。 

启动redis: 
输入命令:redis-server.exe redis.conf 
启动后如下图所示: 
 

启动cmd窗口要一直开着,关闭后则Redis服务关闭。 
这时服务开启着,另外开一个窗口进行,设置客户端: 
输入命令:redis-cli.exe -h 202.117.16.133 -p 6379 
输入后如下图所示: 
 
然后可以开始玩了: 

设置一个Key并获取返回的值: 
Java代码  收藏代码
  1. $ ./redis-cli set mykey somevalue  
  2. OK  
  3. $ ./redis-cli get mykey  
  4. Somevalue  


如何添加值到list:   
Java代码  收藏代码
  1. $ ./redis-cli lpush mylist firstvalue  
  2. OK  
  3. $ ./redis-cli lpush mylist secondvalue  
  4. OK  
  5. $ ./redis-cli lpush mylist thirdvalue  
  6. OK  
  7. $ ./redis-cli lrange mylist 0 -1  
  8. . thirdvalue  
  9. . secondvalue  
  10. . firstvalue  
  11. $ ./redis-cli rpop mylist  
  12. firstvalue  
  13. $ ./redis-cli lrange mylist 0 -1  
  14. . thirdvalue  
  15. . secondvalue  


redis-benchmark.exe:性能测试,用以模拟同时由N个客户端发送M个 SETs/GETs 查询 (类似于 Apache 的 ab 工具). 
Java代码  收藏代码
  1. ./redis-benchmark -n 100000 –c 50  
  2.     ====== SET ======  
  3.     100007 requests completed in 0.88 seconds (译者注:100004 查询完成于 1.14 秒 )  
  4. 50 parallel clients (译者注:50个并发客户端)  
  5. 3 bytes payload (译者注:3字节有效载荷)  
  6. keep alive: 1 (译者注:保持1个连接)  
  7. 58.50% <= 0 milliseconds(译者注:毫秒)  
  8. 99.17% <= 1 milliseconds  
  9. 99.58% <= 2 milliseconds  
  10. 99.85% <= 3 milliseconds  
  11. 99.90% <= 6 milliseconds  
  12. 100.00% <= 9 milliseconds  
  13. 114293.71 requests per second(译者注:每秒 114293.71 次查询)  

Windows下测试并发客户端极限为60 

======================================================================== 

linux平台Redis安装: 
Java代码  收藏代码
  1. wget http://code.google.com/p/redis/downloads/detail?name=redis-2.0.4.tar.gz  
  2. tar xvzf redis-2.0.4.tar.gz  
  3. cd  redis-2.0.4  
  4. make  
  5. mkdir /home/redis  
  6. cp redis-server  /home/redis  
  7. cp redis-benchmark  /home/redis  
  8. cp redis-cli  /home/redis  
  9. cp redis.conf  /home/redis  
  10. cd  /home/redis  


在安装过程中可能需要用到sudo命令,可能新装的redhat虚拟机中新用户还不能使用sudo命令,因此需要手动的修改/etc/sudoers文件,命令如下: 
Java代码  收藏代码
  1. cd /etc  
  2. su root ##切换为root用户,同时输入密码  
  3. chmod u+w sudoers ##放开sudoers文件的写权限  
  4. ##在root ALL = (ALL) ALL下面一行增加 "你的用户名" ALL = (ALL) ALL  
  5. :wq ##保存退出  
  6. chmod u-w sudoers ##取消修改权限  


启动 
./redis-server redis.conf 
进入命令交互模式,两种: 
1:   ./redis-cli 
2:   telnet 127.0.0.1 6379       (ip接端口) 

============================================================= 
配置文件参数说明: 

1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程 
    daemonize no 
2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定 
    pidfile /var/run/redis.pid 
3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字 
    port 6379 
4. 绑定的主机地址 
    bind 127.0.0.1 
5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能 
    timeout 300 
6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose 
    loglevel verbose 
7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null 
    logfile stdout 
8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id 
    databases 16 
9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合 
    save <seconds> <changes> 
    Redis默认配置文件中提供了三个条件: 
    save 900 1 
    save 300 10 
    save 60 10000
 
    分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。 

10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大 
    rdbcompression yes 
11. 指定本地数据库文件名,默认值为dump.rdb 
    dbfilename dump.rdb 
12. 指定本地数据库存放目录 
    dir ./ 
13. 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步 
    slaveof <masterip> <masterport> 
14. 当master服务设置了密码保护时,slav服务连接master的密码 
    masterauth <master-password> 
15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭 
    requirepass foobared 
16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息 
    maxclients 128 
17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区 
    maxmemory <bytes> 
18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no 
    appendonly no 
19. 指定更新日志文件名,默认为appendonly.aof 
     appendfilename appendonly.aof 
20. 指定更新日志条件,共有3个可选值: 
    no:表示等操作系统进行数据缓存同步到磁盘(快) 
    always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全) 
    everysec:表示每秒同步一次(折衷,默认值) 
    appendfsync everysec 

21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制) 
     vm-enabled no 
22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享 
     vm-swap-file /tmp/redis.swap 
23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0 
     vm-max-memory 0 
24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值 
     vm-page-size 32 
25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。 
     vm-pages 134217728 
26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4 
     vm-max-threads 4 
27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启 
    glueoutputbuf yes 
28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法 
    hash-max-zipmap-entries 64 
    hash-max-zipmap-value 512
 
29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍) 
    activerehashing yes 
30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件 
    include /path/to/local.conf
分享到:
评论

相关推荐

    redis window版

    在Windows操作系统上运行Redis可能会有一些与Unix/Linux系统不同的注意事项和配置步骤,但其核心功能和基本操作保持一致。 首先,Redis在Windows上的安装通常会涉及到下载相应的发行版本。在提供的压缩包"Redis"中...

    python入门到高级全栈工程师培训 第3期 附课件代码

    06 linux操作系统安装 07 初识linux命令 08 linux操作系统目录结构 09 目录及文件操作 第4章 01 上节课复习 02 创建用户相关的文件 03 用户增删该查及组相关操作 04 对文件的权限管理 05 对目录的权限管理 06 权限...

    永磁同步电机发电给蓄电池充电控制仿真模型解析 - PMSG与双闭环控制技术

    内容概要:本文详细介绍了永磁同步旋转电机(PMSG)发电给蓄电池充电的控制仿真模型。该模型主要由永磁同步发电机、三相整流桥、整流桥控制模块、测量模块和蓄电池组成。文中首先解释了各组件的功能及其相互协作方式,接着重点讨论了整流桥控制模块的转速、电流双闭环控制机制,尤其是PI控制器的应用。此外,还探讨了储能管理和系统性能优化的方法,如通过LC滤波、自适应偏置、在线参数辨识等手段提高系统的稳定性和效率。最后,通过对实际波形的分析展示了系统的优异表现。 适合人群:从事电力系统、新能源领域的研究人员和技术人员,以及对电机控制感兴趣的工程专业学生。 使用场景及目标:适用于研究和开发高效的新能源发电与储能系统,旨在提升发电效率、稳定性和可靠性。具体应用场景包括但不限于风电场、太阳能电站、电动汽车充电站等。 其他说明:文中提供的代码片段和参数配置均为简化版本,实际应用中需根据具体情况进一步调整优化。

    餐饮业人才流失现状分析及对策研究.doc

    餐饮业人才流失现状分析及对策研究

    车辆动力学领域LQR/LQG控制的主动悬架模型研究及其MATLAB/Simulink实现

    内容概要:本文详细探讨了LQR(线性二次调节器)和LQG(线性二次高斯)控制在车辆主动悬架系统中的应用。文章首先介绍了LQR控制的基本原理,即通过状态反馈控制使系统达到最优状态。接着,通过Simulink建立了多种自由度的主动悬架模型(2自由度、4自由度和7自由度),并在MATLAB中实现了相应的控制算法。文中展示了不同自由度模型的关键性能指标对比,如悬架动挠度、簧载质量加速度等,并提供了具体的MATLAB代码示例。此外,文章还讨论了LQG控制中卡尔曼滤波的应用,以及其在处理噪声环境中的优势。 适合人群:从事车辆工程、控制系统设计的研究人员和技术人员,尤其是对主动悬架系统感兴趣的读者。 使用场景及目标:适用于希望深入了解LQR/LQG控制理论及其在车辆主动悬架系统中具体应用的人群。目标是帮助读者掌握如何利用MATLAB/Simulink搭建和优化主动悬架模型,从而提高车辆行驶的舒适性和稳定性。 其他说明:文章不仅提供了理论解释,还包括大量实用的代码片段和图表,便于读者理解和实践。特别强调了在不同自由度模型之间的选择依据,以及LQG控制在实际应用场景中的重要性。

    离职交接表.doc

    离职交接表.doc

    计算机课程设计相关资源

    计算机课程设计相关资源

    MATLAB中滚动轴承二自由度动力学建模与故障动态响应仿真

    内容概要:本文详细介绍了如何使用MATLAB进行滚动轴承的二自由度动力学建模,涵盖正常状态及内外圈、滚动体故障的动态响应仿真。首先建立了二自由度的动力学方程,定义了质量、阻尼和刚度矩阵,并根据不同类型的故障(内圈、外圈、滚动体)设置了相应的故障激励力。通过ODE求解器(如ode45)求解微分方程,得到时域内的振动波形。接着进行了频谱分析,展示了不同状态下频谱图的特点,如内圈故障在转频的倍频处出现峰值,外圈故障在较低频段有特征峰,滚动体故障表现为宽频带特性。此外,还提供了故障特征提取的方法,如包络谱分析。 适用人群:机械工程领域的研究人员和技术人员,特别是从事机械设备故障诊断和预测性维护的专业人士。 使用场景及目标:适用于需要理解和研究滚动轴承在不同工况下的动态行为的研究项目。主要目标是帮助用户掌握如何利用MATLAB进行轴承动力学建模,识别并分析各种故障模式,从而提高设备的可靠性和安全性。 其他说明:文中提供的代码可以直接用于实验验证,同时给出了许多实用的提示和注意事项,如选择合适的ODE求解器、合理设置故障幅值以及避免数值发散等问题。

    低通滤波器:滤波算法及其在传感器数据处理中的应用

    内容概要:本文详细介绍了低通滤波器的基本概念、不同类型的滤波算法以及它们的应用场景。首先解释了简单的移动平均滤波,这是一种常用且易实现的方法,适用于快速去除高频噪声。接着深入探讨了一阶RC低通滤波器的工作原理和实现方式,强调了alpha系数的选择对滤波效果的影响。此外,还提到了基于环形缓冲区的实时滤波技术和更高阶的巴特沃斯滤波器,后者提供了更好的频率选择性和稳定性。文中通过多个实例展示了如何根据具体的传感器数据特点选择合适的滤波算法,并给出了相应的Python代码片段用于演示和验证。 适合人群:从事嵌入式系统开发、传感器数据分析及相关领域的工程师和技术爱好者。 使用场景及目标:帮助开发者理解和掌握不同类型低通滤波器的特点与实现方法,以便更好地应用于实际项目中,如处理陀螺仪、温度传感器、心率传感器等设备的数据,提高信号质量和系统的可靠性。 其他说明:文章不仅提供了理论知识,还包括了许多实用技巧和注意事项,如滤波器参数的选择、初始化处理、采样率稳定性等问题,这些都是确保滤波效果的关键因素。同时,附带的代码示例可以帮助读者更快地上手实践。

    基于自抗扰控制(ADRC)的永磁同步电机(PMSM)矢量控制技术及其实现

    内容概要:本文深入探讨了基于自抗扰控制(ADRC)的永磁同步电机(PMSM)矢量控制技术。首先介绍了PMSM的特点及其广泛应用背景,强调了矢量控制在实现电机高性能控制方面的重要性。针对传统矢量控制存在的不足,引入了ADRC这一新型控制策略,详细解释了ADRC的工作原理,包括跟踪微分器(TD)、扩张状态观测器(ESO)和非线性状态误差反馈控制律(NLSEF)三个组成部分的功能。随后展示了如何将ADRC应用于PMSM的电流环和速度环控制中,并提供了具体的Python代码实现示例。实验结果显示,在面对负载变化等扰动情况下,采用ADRC的控制系统表现出更好的稳定性和平滑性。 适用人群:从事电机控制领域的研究人员和技术人员,特别是那些希望深入了解并掌握先进控制算法的人群。 使用场景及目标:适用于需要提高永磁同步电机控制系统鲁棒性和响应速度的应用场合,如工业自动化设备、电动汽车等领域。目标是帮助读者理解ADRC的基本概念及其在PMSM矢量控制中的具体应用,从而能够在实际项目中实施该技术。 其他说明:文中还讨论了一些实用技巧,如参数调整的方法和注意事项,以及与其他控制方法(如PI控制)的性能对比。此外,作者鼓励读者尝试不同的参数配置以找到最适合特定应用场景的最佳设置。

    外贸公司员工离职流程及工作交接程序.xls

    外贸公司员工离职流程及工作交接程序.xls

    基于博途1200PLC的教学楼打铃控制系统:数码管显示与定时打铃的实现

    内容概要:本文详细介绍了基于西门子S7-1200 PLC的教学楼打铃控制系统的设计与实现。硬件方面,采用4位7段共阳数码管直接连接PLC的DO点,通过中间继电器或晶体管输出型PLC确保电流足够。软件部分,使用SCL语言编写动态扫描程序,实现数码管的时间显示,并通过系统时钟和定时器实现精确的打铃控制。此外,文章还讨论了数码管显示调试中的常见问题及其解决方案,如鬼影消除、段码转换和时间同步等。 适合人群:具备PLC编程基础的技术人员,尤其是对工业自动化感兴趣的工程师。 使用场景及目标:适用于需要构建或维护教学楼打铃系统的学校和技术爱好者。目标是掌握PLC编程技巧,理解数码管显示和定时控制的工作原理,以及提高对硬件配置和调试的理解。 其他说明:文中提供了详细的代码片段和硬件配置建议,帮助读者更好地理解和实施该项目。同时,强调了项目中的挑战和解决方案,使读者能够避免常见的错误并优化系统性能。

    三菱PLC与显触摸屏实现定长送料系统的伺服/步进控制

    内容概要:本文详细介绍了如何利用三菱PLC(具体型号为FX5U-32MT)和显触摸屏构建定长送料控制系统。该系统支持伺服和步进电机两种驱动方式,涵盖了点动、相对定位和绝对定位三大核心功能。文中不仅提供了详细的硬件连接方法,还展示了具体的PLC梯形图编程实例,以及触摸屏界面的设计要点。特别强调了调试过程中可能遇到的问题及其解决方案,如电子齿轮比计算错误、绝对定位前的原点回归、急停信号的正确接入等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些对PLC编程和伺服/步进电机控制有一定基础的人群。 使用场景及目标:适用于需要精确控制物料长度的场合,如包装、切割等行业。通过该系统可以提高生产效率,减少人工干预,确保送料精度达到±0.02mm。此外,还可以帮助用户掌握PLC编程技巧,提升对伺服/步进电机的理解。 其他说明:文章中提到的一些关键技术点,如点动模式的手动微调、绝对定位的坐标系建立、相对定位的连续作业优化等,对于理解和实施类似的自动化项目非常有帮助。同时,作者分享了许多宝贵的实践经验,有助于读者避开常见陷阱并顺利完成项目部署。

    信号处理领域中基于EMD及其改进方法的信号降噪与性能评估

    内容概要:本文详细介绍了如何利用经验模态分解(EMD)及其两种改进方法——集合经验模态分解(EEMD)和互补集合经验模态分解(CEEMDAN),来进行信号降噪。首先构建了一个由多个正弦波组成的混合信号并加入高斯噪声,随后使用三种方法对该带噪信号进行了分解,通过相关系数筛选有效的固有模态函数(IMF),最终重构信号并评估降噪效果。文中提供了详细的Python代码实现,包括信号生成、分解、重构以及性能评估的具体步骤。性能评估主要采用信噪比(SNR)和均方误差(MSE)作为衡量标准,结果显示CEEMDAN在降噪方面表现出色。 适合人群:从事信号处理领域的研究人员和技术人员,尤其是那些希望深入了解EMD系列算法及其应用的人群。 使用场景及目标:适用于需要对含噪信号进行预处理的各种应用场景,如机械故障诊断、生物医学工程等领域。目标是提高信号的质量,从而更好地支持后续的数据分析和决策制定。 其他说明:文中不仅提供了完整的代码实现,还讨论了不同参数的选择对降噪效果的影响,强调了实际应用中需要注意的问题,如计算资源限制、信号特性的考虑等。此外,作者鼓励读者尝试将仿真信号替换为实际数据,以便更好地理解和掌握这些方法的应用技巧。

    医学图像分割数据集:眼底血管图像语义分割数据集(约48张数据和标签)

    医学图像分割数据集:眼底血管图像语义分割数据集(约48张数据和标签) 【2类别的分割】:背景:0,1:眼底血管(具体参考classes文件) 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,34张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,10张左右图片和对应的mask图片 测试集:images图片目录+masks模板目录,4张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 医学图像分割网络介绍:https://blog.csdn.net/qq_44886601/category_12102735.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

    汽车工程中MATLAB/Simulink实现电动助力转向(EPS)系统的企业级量产模型

    内容概要:本文详细介绍了如何利用MATLAB和Simulink构建并优化电动助力转向(EPS)系统的企业级量产模型。首先探讨了随速助力曲线的设计,展示了如何通过车速和手力矩传感器输入计算助力扭矩。接着深入讲解了Simulink ASW(应用软件层)子系统的具体实现,包括移动平均滤波、助力特性模块、状态机设计以及回正控制等关键技术环节。文中还特别强调了处理现实世界非线性的挑战,如温度补偿、摩擦补偿和故障诊断方法。此外,讨论了手力闭环控制、PID调节、状态机设计以及摩擦模型简化等方面的技术细节,并提到了模型在环测试(MIL)、硬件在环测试(HIL)等验证手段。 适合人群:从事汽车电子控制系统开发的研究人员和技术工程师,尤其是对电动助力转向系统感兴趣的开发者。 使用场景及目标:适用于希望深入了解EPS系统内部工作原理及其优化方法的专业人士。主要目标是帮助读者掌握如何使用MATLAB/Simulink搭建高效可靠的EPS模型,从而应用于实际产品开发中。 其他说明:文章不仅提供了理论知识,还包括了许多实用的代码片段和实践经验分享,有助于读者更好地理解和应用相关技术。

    51单片机光照强度检测系统的实现与优化:滑动变阻器模拟光敏电阻的应用

    内容概要:本文详细介绍了基于51单片机的光照强度检测系统的设计与实现。主要采用滑动变阻器模拟光敏电阻,通过ADC0804进行模数转换,最终在LCD显示屏上显示光照强度等级。文中不仅提供了详细的硬件连接方法,如滑动变阻器与ADC0804的连接、单片机控制ADC的启动和读数等,还包括了完整的C语言源代码,涵盖了ADC读取、数据处理、阈值判断以及Protues仿真的具体步骤。此外,作者还分享了一些实用的调试技巧,如使用_nop_()指令保证信号稳定、加入滤波算法提高数据准确性等。 适合人群:具有一定单片机基础知识的学习者、电子爱好者、初学者及希望深入了解ADC工作的工程师。 使用场景及目标:①帮助读者掌握51单片机与ADC的工作原理及其应用;②提供一种低成本、易操作的光照检测解决方案;③通过实例演示,让读者学会如何进行硬件连接、编写相关程序并解决常见问题。 其他说明:文章强调了硬件连接的注意事项,如ADC0804的CLK引脚接法、滑动变阻器的设置范围等,并给出了具体的代码实现,便于读者理解和实践。同时,还提到了一些优化措施,如加入抗干扰设计、改进数据处理算法等,进一步提升了系统的性能。

    基于Comsol的三轴试验数值模拟:D-C、D-P、M-C准则的应用与实现

    内容概要:本文详细介绍了如何利用Comsol软件结合邓肯张(D-C)、德鲁克普拉格(D-P)和摩尔库伦(M-C)准则进行三轴试验的数值模拟。首先简述了各准则的基本概念及其适用范围,接着逐步讲解了在Comsol中创建土样模型、设定材料属性、施加边界条件和载荷的具体步骤。随后,文章展示了求解过程及结果分析方法,强调了通过数值模拟生成应力-应变曲线并与实际试验数据对比的重要性。此外,文中还提供了许多实用技巧,如参数设置、加载步控制、网格划分等,帮助提高模拟精度和效率。 适合人群:从事岩土工程研究的技术人员、研究生及以上学历的研究人员。 使用场景及目标:适用于需要深入了解土体力学特性的科研工作者,旨在通过数值模拟辅助实际三轴试验,减少实验成本并提升研究深度。具体目标包括掌握不同准则的特点及应用场景,学会使用Comsol进行三轴试验建模与仿真,能够根据模拟结果优化试验设计。 其他说明:文章不仅涵盖了理论知识和技术细节,还分享了许多实践经验,有助于读者更好地理解和应用所学内容。

    tesseract-langpack-aze-cyrl-4.0.0-6.el8.x64-86.rpm.tar.gz

    1、文件说明: Centos8操作系统tesseract-langpack-aze_cyrl-4.0.0-6.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf tesseract-langpack-aze_cyrl-4.0.0-6.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm

Global site tag (gtag.js) - Google Analytics