`
sqlxx
  • 浏览: 18472 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
文章分类
社区版块
存档分类
最新评论

使用浮点数和小数中的技巧和陷阱

 
阅读更多
许多程序员在其整个开发生涯中都不曾使用定点或浮点数,可能的例外是,偶尔在计时测试或基准测试程序中会用到。Java 语言和类库支持两类非整数类型 — IEEE 754 浮点(floatdouble,包装类(wrapper class)为 FloatDouble),以及任意精度的小数(java.math.BigDecimal)。在本月的 Java 理论和实践中,Brian Goetz 探讨了在 Java 程序中使用非整数类型时一些常碰到的陷阱和“gotcha”。请在本文的论坛上提出您对本文的想法,以飨笔者和其他读者。(您也可以单击本文顶部或底部的讨论来访问论坛)。

虽然几乎每种处理器和编程语言都支持浮点运算,但大多数程序员很少注意它。这容易理解 — 我们中大多数很少需要使用非整数类型。除了科学计算和偶尔的计时测试或基准测试程序,其它情况下几乎都用不着它。同样,大多数开发人员也容易忽略 java.math.BigDecimal 所提供的任意精度的小数 — 大多数应用程序不使用它们。然而,在以整数为主的程序中有时确实会出人意料地需要表示非整型数据。例如,JDBC 使用 BigDecimal 作为 SQL DECIMAL 列的首选互换格式。

IEEE 浮点
Java 语言支持两种基本的浮点类型:floatdouble,以及与它们对应的包装类 FloatDouble。它们都依据 IEEE 754 标准,该标准为 32 位浮点和 64 位双精度浮点二进制小数定义了二进制标准。

IEEE 754 用科学记数法以底数为 2 的小数来表示浮点数。IEEE 浮点数用 1 位表示数字的符号,用 8 位来表示指数,用 23 位来表示尾数,即小数部分。作为有符号整数的指数可以有正负之分。小数部分用二进制(底数 2)小数来表示,这意味着最高位对应着值 ?(2-1),第二位对应着 ?(2-2),依此类推。对于双精度浮点数,用 11 位表示指数,52 位表示尾数。IEEE 浮点值的格式如图 1 所示。

图 1. IEEE 754 浮点数的格式

因为用科学记数法可以有多种方式来表示给定数字,所以要规范化浮点数,以便用底数为 2 并且小数点左边为 1 的小数来表示,按照需要调节指数就可以得到所需的数字。所以,例如,数 1.25 可以表示为尾数为 1.01,指数为 0:
(-1)0*1.012*20

数 10.0 可以表示为尾数为 1.01,指数为 3:
(-1)0*1.012*23

特殊数字
除了编码所允许的值的标准范围(对于 float,从 1.4e-45 到 3.4028235e+38),还有一些表示无穷大、负无穷大、-0 和 NaN(它代表“不是一个数字”)的特殊值。这些值的存在是为了在出现错误条件(譬如算术溢出,给负数开平方根,除以 0 等)下,可以用浮点值集合中的数字来表示所产生的结果。

这些特殊的数字有一些不寻常的特征。例如,0-0 是不同值,但在比较它们是否相等时,被认为是相等的。用一个非零数去除以无穷大的数,结果等于 0。特殊数字 NaN 是无序的;使用 ==<> 运算符将 NaN 与其它浮点值比较时,结果为 false。如果 f 为 NaN,则即使 (f == f) 也会得到 false。如果想将浮点值与 NaN 进行比较,则使用 Float.isNaN() 方法。表 1 显示了无穷大和 NaN 的一些属性。

表 1. 特殊浮点值的属性

表达式 结果
Math.sqrt(-1.0) -> NaN
0.0 / 0.0 -> NaN
1.0 / 0.0 -> 无穷大
-1.0 / 0.0 -> 负无穷大
NaN + 1.0 -> NaN
无穷大 + 1.0 -> 无穷大
无穷大 + 无穷大 -> 无穷大
NaN > 1.0 -> false
NaN == 1.0 -> false
NaN < 1.0 -> false
NaN == NaN -> false
0.0 == -0.01 -> true

基本浮点类型和包装类浮点有不同的比较行为
使事情更糟的是,在基本 float 类型和包装类 Float 之间,用于比较 NaN 和 -0 的规则是不同的。对于 float 值,比较两个 NaN 值是否相等将会得到 false,而使用 Float.equals() 来比较两个 NaN Float 对象会得到 true。造成这种现象的原因是,如果不这样的话,就不可能将 NaN Float 对象用作 HashMap 中的键。类似的,虽然 0-0 在表示为浮点值时,被认为是相等的,但使用 Float.compareTo() 来比较作为 Float 对象的 0-0 时,会显示 -0 小于 0

浮点中的危险
由于无穷大、NaN 和 0 的特殊行为,当应用浮点数时,可能看似无害的转换和优化实际上是不正确的。例如,虽然好象 0.0-f 很明显等于 -f,但当 f0 时,这是不正确的。还有其它类似的 gotcha,表 2 显示了其中一些 gotcha。

表 2. 无效的浮点假定

这个表达式…… 不一定等于…… 当……
0.0 - f -f f 为 0
f < g ! (f >= g) f 或 g 为 NaN
f == f true f 为 NaN
f + g - g f g 为无穷大或 NaN

舍入误差
浮点运算很少是精确的。虽然一些数字(譬如 0.5)可以精确地表示为二进制(底数 2)小数(因为 0.5 等于 2-1),但其它一些数字(譬如 0.1)就不能精确的表示。因此,浮点运算可能导致舍入误差,产生的结果接近 — 但不等于 — 您可能希望的结果。例如,下面这个简单的计算将得到 2.600000000000001,而不是 2.6



 double s=0;
  for (int i=0; i<26; i++)
    s += 0.1;
  System.out.println(s);



类似的,.1*26 相乘所产生的结果不等于 .1 自身加 26 次所得到的结果。当将浮点数强制转换成整数时,产生的舍入误差甚至更严重,因为强制转换成整数类型会舍弃非整数部分,甚至对于那些“看上去似乎”应该得到整数值的计算,也存在此类问题。例如,下面这些语句:



 double d = 29.0 * 0.01;
  System.out.println(d);
  System.out.println((int) (d * 100));



将得到以下输出:



 0.29
  28



这可能不是您起初所期望的。

浮点数比较指南
由于存在 NaN 的不寻常比较行为和在几乎所有浮点计算中都不可避免地会出现舍入误差,解释浮点值的比较运算符的结果比较麻烦。

最好完全避免使用浮点数比较。当然,这并不总是可能的,但您应该意识到要限制浮点数比较。如果必须比较浮点数来看它们是否相等,则应该将它们差的绝对值同一些预先选定的小正数进行比较,这样您所做的就是测试它们是否“足够接近”。(如果不知道基本的计算范围,可以使用测试“abs(a/b - 1) < epsilon”,这种方法比简单地比较两者之差要更准确)。甚至测试看一个值是比零大还是比零小也存在危险 —“以为”会生成比零略大值的计算事实上可能由于积累的舍入误差会生成略微比零小的数字。

NaN 的无序性质使得在比较浮点数时更容易发生错误。当比较浮点数时,围绕无穷大和 NaN 问题,一种避免 gotcha 的经验法则是显式地测试值的有效性,而不是试图排除无效值。在清单 1 中,有两个可能的用于特性的 setter 的实现,该特性只能接受非负数值。第一个实现会接受 NaN,第二个不会。第二种形式比较好,因为它显式地检测了您认为有效的值的范围。

清单 1. 需要非负浮点值的较好办法和较差办法
   // Trying to test by exclusion -- this doesn't catch NaN or infinity
    public void setFoo(float foo) {
      if (foo < 0)
          throw new IllegalArgumentException(Float.toString(f));
        this.foo = foo;
    }
    // Testing by inclusion -- this does catch NaN
    public void setFoo(float foo) {
      if (foo >= 0 && foo < Float.INFINITY)
        this.foo = foo;
  else
        throw new IllegalArgumentException(Float.toString(f));
    }

不要用浮点值表示精确值
一些非整数值(如几美元和几美分这样的小数)需要很精确。浮点数不是精确值,所以使用它们会导致舍入误差。因此,使用浮点数来试图表示象货币量这样的精确数量不是一个好的想法。使用浮点数来进行美元和美分计算会得到灾难性的后果。浮点数最好用来表示象测量值这类数值,这类值从一开始就不怎么精确。

用于较小数的 BigDecimal
从 JDK 1.3 起,Java 开发人员就有了另一种数值表示法来表示非整数:BigDecimalBigDecimal 是标准的类,在编译器中不需要特殊支持,它可以表示任意精度的小数,并对它们进行计算。在内部,可以用任意精度任何范围的值和一个换算因子来表示 BigDecimal,换算因子表示左移小数点多少位,从而得到所期望范围内的值。因此,用 BigDecimal 表示的数的形式为 unscaledValue*10-scale

用于加、减、乘和除的方法给 BigDecimal 值提供了算术运算。由于 BigDecimal 对象是不可变的,这些方法中的每一个都会产生新的 BigDecimal 对象。因此,因为创建对象的开销,BigDecimal 不适合于大量的数学计算,但设计它的目的是用来精确地表示小数。如果您正在寻找一种能精确表示如货币量这样的数值,则 BigDecimal 可以很好地胜任该任务。

所有的 equals 方法都不能真正测试相等
如浮点类型一样,BigDecimal 也有一些令人奇怪的行为。尤其在使用 equals() 方法来检测数值之间是否相等时要小心。equals() 方法认为,两个表示同一个数但换算值不同(例如,100.00100.000)的 BigDecimal 值是不相等的。然而,compareTo() 方法会认为这两个数是相等的,所以在从数值上比较两个 BigDecimal 值时,应该使用 compareTo() 而不是 equals()

另外还有一些情形,任意精度的小数运算仍不能表示精确结果。例如,1 除以 9 会产生无限循环的小数 .111111...。出于这个原因,在进行除法运算时,BigDecimal 可以让您显式地控制舍入。movePointLeft() 方法支持 10 的幂次方的精确除法。

使用 BigDecimal 作为互换类型
SQL-92 包括 DECIMAL 数据类型,它是用于表示定点小数的精确数字类型,它可以对小数进行基本的算术运算。一些 SQL 语言喜欢称此类型为 NUMERIC 类型,其它一些 SQL 语言则引入了 MONEY 数据类型,MONEY 数据类型被定义为小数点右侧带有两位的小数。

如果希望将数字存储到数据库中的 DECIMAL 字段,或从 DECIMAL 字段检索值,则如何确保精确地转换该数字?您可能不希望使用由 JDBC PreparedStatementResultSet 类所提供的 setFloat()getFloat() 方法,因为浮点数与小数之间的转换可能会丧失精确性。相反,请使用 PreparedStatementResultSetsetBigDecimal()getBigDecimal() 方法。

类似的,象 Castor 这样的 XML 数据绑定工具使用 BigDecimal 会生成小数值属性和元素(在 XSD 模式中支持这种基本数据类型)的 getter 和 setter。

构造 BigDecimal 数
对于 BigDecimal,有几个可用的构造函数。其中一个构造函数以双精度浮点数作为输入,另一个以整数和换算因子作为输入,还有一个以小数的 String 表示作为输入。要小心使用 BigDecimal(double) 构造函数,因为如果不了解它,会在计算过程中产生舍入误差。请使用基于整数或 String 的构造函数。

如果使用 BigDecimal(double) 构造函数不恰当,在传递给 JDBC setBigDecimal() 方法时,会造成似乎很奇怪的 JDBC 驱动程序中的异常。例如,考虑以下 JDBC 代码,该代码希望将数字 0.01 存储到小数字段:

 PreparedStatement ps =
    connection.prepareStatement("INSERT INTO Foo SET name=?, value=?");
  ps.setString(1, "penny");
  ps.setBigDecimal(2, new BigDecimal(0.01));
  ps.executeUpdate();

在执行这段似乎无害的代码时会抛出一些令人迷惑不解的异常(这取决于具体的 JDBC 驱动程序),因为 0.01 的双精度近似值会导致大的换算值,这可能会使 JDBC 驱动程序或数据库感到迷惑。JDBC 驱动程序会产生异常,但可能不会说明代码实际上错在哪里,除非意识到二进制浮点数的局限性。相反,使用 BigDecimal("0.01")BigDecimal(1, 2) 构造 BigDecimal 来避免这类问题,因为这两种方法都可以精确地表示小数。

结束语
在 Java 程序中使用浮点数和小数充满着陷阱。浮点数和小数不象整数一样“循规蹈矩”,不能假定浮点计算一定产生整型或精确的结果,虽然它们的确“应该”那样做。最好将浮点运算保留用作计算本来就不精确的数值,譬如测量。如果需要表示定点数(譬如,几美元和几美分),则使用 BigDecimal

参考资料

分享到:
评论

相关推荐

    浮点算术须知(英文)

    通过对浮点数的理解和掌握,我们可以更好地应对现实世界中涉及复杂数值计算的各种挑战。无论是进行科学计算还是构建高性能的金融系统,了解浮点数的工作原理都是至关重要的。Goldburg 的这篇经典之作无疑为这一领域...

    js保留小数位数

    这看似简单的需求背后其实隐藏着不少细节和陷阱,尤其是在JavaScript这种动态语言中。 ### 二、理解JavaScript中的浮点数表示 在深入探讨具体的实现方法之前,我们先来了解一下JavaScript中浮点数的表示方式。...

    Bioinformatics Programming Using Python

    在编程中使用断言可以验证程序中的假设是否成立,例如在生物信息学数据处理过程中,可以使用断言来确保数据满足特定的条件,如序列的长度、格式的一致性等。 整体而言,这本书应该为读者提供了全面的指导,从基础的...

    生物信息学编程使用Python

    本书不仅提供了Python编程的基本概念和实践技巧,还深入介绍了如何使用Python解决实际的生物信息学问题。通过学习本书,读者能够更好地理解和应用生物信息学领域的知识,并利用Python进行高效的数据处理和分析。

    生物信息学编程使用python

    - **浮点数**:浮点数可以表示小数,如`3.14`, `-0.001`等。 - **字符串**:字符串是由字符组成的序列,可以通过单引号或双引号创建,如`'hello'`, `"world"`等。 2. **表达式**: - **数值运算符**:包括加法...

    《Java解惑》

    《Java解惑》一书揭示了Java编程中常见的困惑与陷阱,旨在帮助开发者避免这些问题,提高代码质量和效率。以下是对书中的几个关键知识点的详细解释: 1. **奇偶判断优化**: 在Java中,判断一个整数是否为奇数,...

    A Practical Introduction to Python Programming

    - 循环变量:介绍循环变量的概念,解释如何在循环中使用它们。 - range函数:讲解range()函数的使用,以及它在循环中的作用。 - 复杂示例:展示一个更复杂的for循环实例,帮助理解循环的嵌套和复杂逻辑。 3. ...

    java高手之路

    ### Java高手之路:关键知识点详解 #### 数值表达式注意事项 在Java编程中,处理数值表达式时,有几个重要的细节需要特别...在日常开发中,始终关注数据类型的正确使用和数值计算的精度,是成为Java高手的必经之路。

    BigDecimal详解、代码示例和经常遇到的坑

    通过了解这些关键概念和技巧,开发者可以在处理高精度数值时更加得心应手。`BigDecimal`的强大功能不仅限于上述提到的特性,还支持更多的高级操作,如绝对值计算、指数运算等,这些都是在实际开发中可能需要用到的...

    python数据类型之间怎么转换技巧分享

    例如,浮点数到整数的转换会丢失小数部分,而将数字转换为字符串虽然看似简单,但在某些情况下可能会导致数据的使用场景受限。 最后,数据类型转换不仅仅是为了满足运算的需要,还可以用于数据验证、清洗等场景。在...

    《The Art of Assembly Language Programming》

    第二十五章提供了程序优化的策略和技巧,包括算法优化、数据结构选择和编译器选项,这有助于提高程序的性能和效率。 ### 结论 《汇编语言编程艺术》全面覆盖了汇编语言编程的各个方面,从基础到高级,从理论到实践...

    在C语言编程中使用变量的基础教程

    总之,理解C语言中变量的基本概念和使用技巧至关重要,尤其是指针的运用,它既是C语言强大的工具,也是潜在的陷阱。通过深入学习和实践,可以充分利用C语言的灵活性和效率,编写出高效且可靠的代码。

    vrml中的类型转换

    在虚拟现实建模语言(Virtual Reality Modeling Language,简称VRML)中,类型转换是一个关键...该博客可能涵盖了具体的代码示例、常见陷阱和最佳实践,对于想要在VRML中进行类型转换的开发者来说,是一个宝贵的资源。

    cpp-diary:杂项和练习用C ++编写的程序

    9. **strtok-s**:`strtok_s`是安全版本的`strtok`函数,主要在Windows平台的C运行时库中使用,用于解析字符串。它提供了更好的错误处理,避免了某些可能导致安全问题的情况。 10. **trap-representation**:陷阱...

Global site tag (gtag.js) - Google Analytics