在MySQL中,慢查询日志是经常作为我们优化数据库的依据,那在MongoDB中是否有类似的功能呢?答案是肯定的,那就是Mongo Database Profiler.不仅有,而且还有一些比MySQL的Slow Query Log更详细的信息。它就是我们这篇文章的主题。
开启 Profiling 功能
有两种方式可以控制 Profiling 的开关和级别,第一种是直接在启动参数里直接进行设置。
启动MongoDB时加上–profile=级别 即可。
也可以在客户端调用db.setProfilingLevel(级别) 命令来实时配置。可以通过db.getProfilingLevel()命令来获取当前的Profile级别。
> db.setProfilingLevel(2); {"was" : 0 , "ok" : 1} > db.getProfilingLevel() |
上面斜体的级别可以取0,1,2 三个值,他们表示的意义如下:
0 – 不开启
1 – 记录慢命令 (默认为>100ms)
2 – 记录所有命令
Profile 记录在级别1时会记录慢命令,那么这个慢的定义是什么?上面我们说到其默认为100ms,当然有默认就有设置,其设置方法和级别一样有两种,一种是通过添加–slowms启动参数配置。第二种是调用db.setProfilingLevel时加上第二个参数:
db.setProfilingLevel( level , slowms ) db.setProfilingLevel( 1 , 10 ); |
查询 Profiling 记录
与MySQL的慢查询日志不同,Mongo Profile 记录是直接存在系统db里的,记录位置 system.profile ,所以,我们只要查询这个Collection的记录就可以获取到我们的 Profile 记录了。
> db.system.profile.find() {"ts" : "Thu Jan 29 2009 15:19:32 GMT-0500 (EST)" , "info" : "query test.$cmd ntoreturn:1 reslen:66 nscanned:0 query: { profile: 2 } nreturned:1 bytes:50" , "millis" : 0} db.system.profile.find( { info: /test.foo/ } ) {"ts" : "Thu Jan 29 2009 15:19:40 GMT-0500 (EST)" , "info" : "insert test.foo" , "millis" : 0} {"ts" : "Thu Jan 29 2009 15:19:42 GMT-0500 (EST)" , "info" : "insert test.foo" , "millis" : 0} {"ts" : "Thu Jan 29 2009 15:19:45 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen:102 nscanned:2 query: {} nreturned:2 bytes:86" , "millis" : 0} {"ts" : "Thu Jan 29 2009 15:21:17 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen:36 nscanned:2 query: { $not: { x: 2 } } nreturned:0 bytes:20" , "millis" : 0} {"ts" : "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception bytes:53" , "millis" : 88} |
列出执行时间长于某一限度(5ms)的 Profile 记录:
> db.system.profile.find( { millis : { $gt : 5 } } ) {"ts" : "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception bytes:53" , "millis" : 88} |
查看最新的 Profile 记录:
db.system.profile.find().sort({$natural:-1})
Mongo Shell 还提供了一个比较简洁的命令show profile,可列出最近5条执行时间超过1ms的 Profile 记录。
Profile 信息内容详解:
ts-该命令在何时执行.
millis Time-该命令执行耗时,以毫秒记.
info-本命令的详细信息.
query-表明这是一个query查询操作.
ntoreturn-本次查询客户端要求返回的记录数.比如, findOne()命令执行时 ntoreturn 为 1.有limit(n) 条件时ntoreturn为n.
query-具体的查询条件(如x>3).
nscanned-本次查询扫描的记录数.
reslen-返回结果集的大小.
nreturned-本次查询实际返回的结果集.
update-表明这是一个update更新操作.
fastmod-Indicates a fast modify operation. See Updates. These operations are normally quite fast.
fastmodinsert – indicates a fast modify operation that performed an upsert.
upsert-表明update的upsert参数为true.此参数的功能是如果update的记录不存在,则用update的条件insert一条记录.
moved-表明本次update是否移动了硬盘上的数据,如果新记录比原记录短,通常不会移动当前记录,如果新记录比原记录长,那么可能会移动记录到其它位置,这时候会导致相关索引的更新.磁盘操作更多,加上索引更新,会使得这样的操作比较慢.
insert-这是一个insert插入操作.
getmore-这是一个getmore 操作,getmore通常发生在结果集比较大的查询时,第一个query返回了部分结果,后续的结果是通过getmore来获取的。
MongoDB 查询优化
如果nscanned(扫描的记录数)远大于nreturned(返回结果的记录数)的话,那么我们就要考虑通过加索引来优化记录定位了。
reslen 如果过大,那么说明我们返回的结果集太大了,这时请查看find函数的第二个参数是否只写上了你需要的属性名。(类似 于MySQL中不要总是select *)
对于创建索引的建议是:如果很少读,那么尽量不要添加索引,因为索引越多,写操作会越慢。如果读量很大,那么创建索引还是比较划算的。(和RDBMS一样,貌似是废话 -_-!!)
MongoDB 更新优化
如果写查询量或者update量过大的话,多加索引是会有好处的。以及~~~~(省略N字,和RDBMS差不多的道理)
Use fast modify operations when possible (and usually with these, an index). See Updates.
Profiler 的效率
Profiling 功能肯定是会影响效率的,但是不太严重,原因是他使用的是system.profile 来记录,而system.profile 是一个capped collection 这种collection 在操作上有一些限制和特点,但是效率更高。
分享到:
相关推荐
MongoDB的慢日志查询,或称为Database Profiler,是一个非常重要的工具,它允许开发者和数据库管理员监控并分析性能瓶颈,以优化数据库操作。在MySQL等关系型数据库中,慢查询日志同样起到了关键作用,而在NoSQL的...
6. 分析器:MongoDB 数据库分析器显示的是针对数据库的每个操作的性能特征,如果使用 profiler 查询时,速度比实际速度慢。 7. 移动 moveChunk 目录下的旧文件:可以移动 moveChunk 目录中的旧文件,在正常的碎片...
knowledge point 9: Profiler 在 MongoDB 中的作用 * MongoDB 数据库分析器显示针对数据库的每个操作的性能特征 * 您可以使用探查器找到比其慢的查询 knowledge point 10: 将旧文件移动到 moveChunk 目录中 * 是...
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
kolesar_3cd_01_0716
latchman_01_0108
matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
pimpinella_3cd_01_0716
petrilla_01_0308
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
内容概要:本文档由张卓老师讲解,重点探讨DeepSeek的技术革新及强化学习对未来AI发展的重要性。文章回顾了AI的历史与发展阶段,详细解析Transformer架构在AI上半场所起到的作用,深入介绍了MoE混合专家以及MLA低秩注意机制等技术特点如何帮助DeepSeek在AI中场建立优势,并探讨了当前强化学习的挑战和边界。文档不仅提及AlphaGo和小游戏等成功案例来说明强化学习的强大力量,还提出了关于未来人工通用智能(AGI)的展望,特别是如何利用强化学习提升现有LLMs的能力和性能。 适用人群:本资料适宜对深度学习感兴趣的研究人员、开发者以及想要深入了解人工智能最新进展的专业人士。 使用场景及目标:通过了解最新的AI技术和前沿概念,在实际工作中能够运用更先进的工具和技术解决问题。同时为那些寻求职业转型或者学术深造的人提供了宝贵的参考。 其他说明:文中提到了许多具体的例子和技术细节,如DeepSeek的技术特色、RL的理论背景等等,有助于加深读者对于现代AI系统的理解和认识。
有师傅小程序开源版v2.4.14 新增报价短信奉告 优化部分细节
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
商城二级三级分销系统(小程序+后台含源码).zip
li_3ck_01b_0918
nicholl_3cd_01_0516
媒体关注度是一个衡量公众对某个事件、话题或个体关注程度的重要指标。它主要反映了新闻媒体、社交媒体、博客等对于某一事件、话题或个体的报道和讨论程度。 媒体监督的J-F系数(Janis-Fadner系数)是一种用于测量媒体关注度的指标,特别是用于评估媒体对企业、事件或话题的监督力度。J-F系数基于媒体报道的正面和负面内容来计算,从而为公众、研究者或企业提供一个量化工具,以了解媒体对其关注的方向和强度。 本数据含原始数据、参考文献、代码do文件、最终结果。参考文献中JF系数计算公式。 指标 代码、年份、标题出现该公司的新闻总数、内容出现该公司的新闻总数、正面新闻数全部、中性新闻数全部、负面新闻数全部、正面新闻数原创、中性新闻数原创、负面新闻数原创,媒体监督JF系数。
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!