转自:搜索技术博客-淘宝 Redis内存存储结构分析
1 Redis 内存存储结构
本文是基于 Redis-v2.2.4 版本进行分析.
1.1 Redis 内存存储总体结构
Redis 是支持多key-value数据库(表)的,并用 RedisDb 来表示一个key-value数据库(表). redisServer 中有一个 redisDb *db; 成员变量, RedisServer 在初始化时,会根据配置文件的 db 数量来创建一个 redisDb 数组. 客户端在连接后,通过 SELECT 指令来选择一个 reidsDb,如果不指定,则缺省是redisDb数组的第1个(即下标是 0 ) redisDb. 一个客户端在选择 redisDb 后,其后续操作都是在此 redisDb 上进行的. 下面会详细介绍一下 redisDb 的内存结构.
redis 的内存存储结构示意图
redisDb 的定义:
typedef struct redisDb
{
dict *dict; /* The keyspace for this DB */
dict *expires; /* Timeout of keys with a timeout set */
dict *blocking_keys; /* Keys with clients waiting for data (BLPOP) */
dict *io_keys; /* Keys with clients waiting for VM I/O */
dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */
int id;
} redisDb;
struct
redisDb 中 ,dict 成员是与实际存储数据相关的. dict 的定义如下:
typedef struct dictEntry
{
void *key;
void *val;
struct dictEntry *next;
} dictEntry;
typedef struct dictType
{
unsigned int (*hashFunction)(const void *key);
void *(*keyDup)(void *privdata, const void *key);
void *(*valDup)(void *privdata, const void *obj);
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
} dictType;
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
typedef struct dictht
{
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dict
{
dictType *type;
void *privdata;
dictht ht[2];
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
int iterators; /* number of iterators currently running */
} dict;
dict 是主要是由 struct dictht 的 哈唏表构成的, 之所以定义成长度为2的( dictht ht[2] ) 哈唏表数组,是因为 redis 采用渐进的 rehash,即当需要 rehash 时,每次像 hset,hget 等操作前,先执行N 步 rehash. 这样就把原来一次性的 rehash过程拆散到进行, 防止一次性 rehash 期间 redis 服务能力大幅下降. 这种渐进的 rehash 需要一个额外的 struct dictht 结构来保存.
struct dictht 主要是由一个 struct dictEntry 指针数组组成的, hash 表的冲突是通过链表法来解决的.
struct dictEntry 中的 key 指针指向用 sds 类型表示的 key 字符串, val 指针指向一个 struct redisObject 结构体, 其定义如下:
typedef struct redisObject
{
unsigned type:4;
unsigned storage:2; /* REDIS_VM_MEMORY or REDIS_VM_SWAPPING */
unsigned encoding:4;
unsigned lru:22; /* lru time (relative to server.lruclock) */
int refcount;
void *ptr;
/* VM fields are only allocated if VM is active, otherwise the
* object allocation function will just allocate
* sizeof(redisObjct) minus sizeof(redisObjectVM), so using
* Redis without VM active will not have any overhead. */
} robj;
//type 占 4 bit,用来表示 key-value 中 value 值的类型,目前 redis 支持: string, list, set,zset,hash 5种类型的值.
/* Object types */
#define REDIS_STRING 0
#define REDIS_LIST 1
#define REDIS_SET 2
#define REDIS_ZSET 3
#define REDIS_HASH 4
#define REDIS_VMPOINTER 8
// storage 占 2 bit ,表示 此值是在 内存中,还是 swap 在硬盘上.
// encoding 占 4 bit ,表示值的编码类型,目前有 8种类型:
/* Objects encoding. Some kind of objects like Strings and Hashes can be
* internally represented in multiple ways. The 'encoding' field of the object
* is set to one of this fields for this object. */
#define REDIS_ENCODING_RAW 0 /* Raw representation */
#define REDIS_ENCODING_INT 1 /* Encoded as integer */
#define REDIS_ENCODING_HT 2 /* Encoded as hash table */
#define REDIS_ENCODING_ZIPMAP 3 /* Encoded as zipmap */
#define REDIS_ENCODING_LINKEDLIST 4 /* Encoded as regular linked list */
#define REDIS_ENCODING_ZIPLIST 5 /* Encoded as ziplist */
#define REDIS_ENCODING_INTSET 6 /* Encoded as intset */
#define REDIS_ENCODING_SKIPLIST 7 /* Encoded as skiplist */
/* 如 type 是 REDIS_STRING 类型的,则其值如果是数字,就可以编码成 REDIS_ENCODING_INT,以节约内存.
* 如 type 是 REDIS_HASH 类型的,如果其 entry 小于配置值: hash-max-zipmap-entries 或 value字符串的长度小于 hash-max-zipmap-value, 则可以编码成 REDIS_ENCODING_ZIPMAP 类型存储,以节约内存. 否则采用 Dict 来存储.
* 如 type 是 REDIS_LIST 类型的,如果其 entry 小于配置值: list-max-ziplist-entries 或 value字符串的长度小于 list-max-ziplist-value, 则可以编码成 REDIS_ENCODING_ZIPLIST 类型存储,以节约内存; 否则采用 REDIS_ENCODING_LINKEDLIST 来存储.
* 如 type 是 REDIS_SET 类型的,如果其值可以表示成数字类型且 entry 小于配置值set-max-intset-entries, 则可以编码成 REDIS_ENCODING_INTSET 类型存储,以节约内存; 否则采用 Dict类型来存储.
* lru: 是时间戳
* refcount: 引用次数
* void * ptr : 指向实际存储的 value 值内存块,其类型可以是 string, set, zset,list,hash ,编码方式可以是上述 encoding 表示的一种.
* 至于一个 key 的 value 采用哪种类型来保存,完全是由客户端的指令来决定的,如 hset ,则值是采用REDIS_HASH 类型表示的,至于那种编码(encoding),则由 redis 根据配置自动决定.
*/
1.2 Dict 结构
Dict 结构在<1.1Redis 内存存储结构>; 已经描述过了,这里不再赘述.
1.3 zipmap 结构
如果redisObject的type 成员值是 REDIS_HASH 类型的,则当该hash 的 entry 小于配置值: hash-max-zipmap-entries 或者value字符串的长度小于 hash-max-zipmap-value, 则可以编码成 REDIS_ENCODING_ZIPMAP 类型存储,以节约内存. 否则采用 Dict 来存储.
zipmap 其实质是用一个字符串数组来依次保存key和value,查询时是依次遍列每个 key-value 对,直到查到为止. 其结构示意图如下:
为了节约内存,这里使用了一些小技巧来保存 key 和 value 的长度. 如果 key 或 value 的长度小于ZIPMAP_BIGLEN(254),则用一个字节来表示,如果大于ZIPMAP_BIGLEN(254),则用5个字节保存,第一个字节为保存ZIPMAP_BIGLEN(254),后面4个字节保存 key或value 的长度.
- 初始化时只有2个字节,第1个字节表示 zipmap 保存的 key-value 对的个数(如果key-value 对的个数超过 254,则一直用254来表示, zipmap 中实际保存的 key-value 对个数可以通过 zipmapLen() 函数计算得到).
- hset(nick,wuzhu) 后
- 第1个字节保存key-value 对(即 zipmap 的entry 数量)的数量1
- 第2个字节保存key_len 值 4
- 第3~6 保存 key “nick”
- 第 7 字节保存 value_len 值 5
- 第 8 字节保存空闭的字节数 0 (当 该 key 的值被重置时,其新值的长度与旧值的长度不一定相等,如果新值长度比旧值的长度大,则 realloc 扩大内存; 如果新值长度比旧值的长度小,且相差大于 4 bytes ,则 realloc 缩小内存,如果相差小于 4,则将值往前移,并用 empty_len 保存空闲的byte 数)
- 第 9~13字节保存 value 值 “wuzhu”
- hset(age,30) 插入 key-value 对 (“age”,30)
- hset(nick,tide) 插入 key-value 对 (“nick”,”tide”), 后可以看到 empty_len 为1 ,
1.4 ziplist 结构
如果redisObject的type 成员值是 REDIS_LIST 类型的,则当该list 的 elem数小于配置值: hash-max-ziplist-entries 或者elem_value字符串的长度小于 hash-max-ziplist-value, 则可以编码成 REDIS_ENCODING_ZIPLIST 类型存储,以节约内存. 否则采用 Dict 来存储.
ziplist 其实质是用一个字符串数组形式的双向链表. 其结构示意图如下:
- ziplist header由3个字段组成:
- ziplist_bytes: 用一个uint32_t 来保存, 构成 ziplist 的字符串数组的总长度,包括 ziplist header,
- ziplist_tail_offset: 用一个uint32_t 来保存,记录 ziplist 的尾部偏移位置.
- ziplist_length: 用一个 uint16_t 来保存,记录 ziplist 中 elem 的个数
- ziplist node 也由 3 部分组成:
- prevrawlen: 保存上一个 ziplist node 的占用的字节数,包括: 保存prevarwlen,currawlen 的字节数和elem value 的字节数.
- currawlen&encoding: 当前elem value 的raw 形式存款所需的字节数及在ziplist 中保存时的编码方式(例如,值可以转换成整数,如示意图中的”1024”, raw_len 是 4 字节,但在 ziplist 保存时转换成 uint16_t 来保存,占2 个字节).
- (编码后的)value
可以通过 prevrawlen 和 currawlen&encoding 来遍列 ziplist.
ziplist 还能到一些小技巧来节约内存.
- len 的存储: 如果 len 小于 ZIP_BIGLEN(254),则用一个字节来保存; 否则需要 5 个字节来保存,第 1 个字节存 ZIP_BIGLEN,作为标识符.
- value 的存储: 如果 value 是数字类型的,则根据其值的范围转换成 ZIP_INT_16B, ZIP_INT_32B或ZIP_INT_64B 来保存,否则用 raw 形式保存.
1.5 adlist 结构
typedef struct listNode
{
struct listNode *prev;
struct listNode *next;
void *value;
} listNode;
typedef struct listIter
{
listNode *next;
int direction;
} listIter;
typedef struct list
{
listNode *head;
listNode *tail;
void *(*dup)(void *ptr);
void (*free)(void *ptr);
int (*match)(void *ptr, void *key);
unsigned int len;
} list;
常见的双向链表,不作分析.
1.6 intset 结构
intset 是用一个有序的整数数组来实现集合(set). struct intset 的定义如下:
typedef struct intset
{
uint32_t encoding;
uint32_t length;
int8_t contents[];
} intset;
- encoding: 来标识数组是 int16_t 类型, int32_t 类型还是 int64_t 类型的数组. 至于怎么先择是那种类型的数组,是根据其保存的值的取值范围来决定的,初始化时是 int16_t, 根据 set 中的最大值在 [INT16_MIN, INT16_MAX] , [INT32_MIN, INT32_MAX], [INT64_MIN, INT64_MAX]的那个取值范围来动态确定整个数组的类型. 例如set一开始是 int16_t 类型,当一个取值范围在 [INT32_MIN, INT32_MAX]的值加入到 set 时,则将保存 set 的数组升级成 int32_t 的数组.
- length: 表示 set 中值的个数
- contents: 指向整数数组的指针
1.7 zset 结构
首先,介绍一下 skip list 的概念,然后再分析 zset 的实现.
1.7.1 Skip List 介绍
1.7.1.1 有序链表
1) Searching a key in a Sorted linked list
//Searching an element <em>x</em>
cell *p =head ;
while (p->next->key < x ) p=p->next ;
return p ;
Note: we return the element proceeding either the element containing x, or the smallest element with a key larger than x (if x does not exists)
2) inserting a key into a Sorted linked list
//To insert 35 -
p=find(35);
CELL *p1 = (CELL *) malloc(sizeof(CELL));
p1->key=35;
p1->next = p->next ;
p->next = p1 ;
3) deleteing a key from a sorted list
//To delete 37 -
p=find(37);
CELL *p1 =p->next;
p->next = p1->next ;
free(p1);
1.7.1.2 SkipList(跳跃表)定义
SKIP LIST : A data structure for maintaing a set of keys in a sorted order.
Consists of several levels.
All keys appear in level 1
Each level is a sorted list.
If key x appears in level i, then it also appears in all levels below i
An element in level i points (via down pointer) to the element with the same key in the level below.
In each level the keys and appear. (In our implementation, INT_MIN and INT_MAX
Top points to the smallest element in the highest level.
1.7.1.3 SkipList(跳跃表)操作
1) An empty SkipList
2) Finding an element with key x
p=top
While(1)
{
while (p->next->key < x ) p=p->next;
If (p->down == NULL ) return p->next
p=p->down ;
}
Observe that we return x, if exists, or succ(x) if x is not in the SkipList
3) Inserting new element X
Determine k the number of levels in which x participates (explained later)
Do find(x), and insert x to the appropriate places in the lowest k levels. (after the elements at which the search path turns down or terminates)
Example – inserting 119. k=2
If k is larger than the current number of levels, add new levels (and update top)
Example – inser(119) when k=4
Determining k
k – the number of levels at which an element x participate.
Use a random function OurRnd() — returns 1 or 0 (True/False) with equal probability.
k=1 ;
While( OurRnd() ) k++ ;
Deleteing a key x
Find x in all the levels it participates, and delete it using the standard ‘delete from a linked list’ method.
If one or more of the upper levels are empty, remove them (and update top)
Facts about SkipList
The expected number of levels is O( log n )
(here n is the numer of elements)
The expected time for insert/delete/find is O( log n )
The expected size (number of cells) is O(n )
1.7.2 redis SkipList 实现
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode
{
robj *obj;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel
{
struct zskiplistNode *forward;
unsigned int span;
} level[];
} zskiplistNode;
typedef struct zskiplist
{
struct zskiplistNode *header, *tail;
unsigned long length;
int level;
} zskiplist;
typedef struct zset
{
dict *dict;
zskiplist *zsl;
} zset;
zset 的实现用到了2个数据结构: hash_table 和 skip list (跳跃表),其中 hash table 是使用 redis 的 dict 来实现的,主要是为了保证查询效率为 O(1),而 skip list (跳跃表) 是用来保证元素有序并能够保证 INSERT 和 REMOVE 操作是 O(logn)的复杂度。
1) zset初始化状态
createZsetObject函数来创建并初始化一个 zset
robj *createZsetObject(void)
{
zset *zs = zmalloc(sizeof(*zs));
robj *o;
zs->dict = dictCreate(&zsetDictType,NULL);
zs->zsl = zslCreate();
o = createObject(REDIS_ZSET,zs);
o->encoding = REDIS_ENCODING_SKIPLIST;
return o;
}
zslCreate()函数用来创建并初如化一个 skiplist。 其中,skiplist 的 level 最大值为 ZSKIPLIST_MAXLEVEL=32 层。
zskiplist *zslCreate(void)
{
int j;
zskiplist *zsl;
zsl = zmalloc(sizeof(*zsl));
zsl->level = 1;
zsl->length = 0;
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level[j].forward = NULL;
zsl->header->level[j].span = 0;
}
zsl->header->backward = NULL;
zsl->tail = NULL;
return zsl;
}
2) ZADD myzset 1 “one”
ZADD 命令格式:
ZADD key score member
- 根据 key 从 redisDb 进行查询,返回 zset 对象。
- 以 member 作为 key,score 作为 value ,向 zset的 dict 进行中插入;
- 如果返回成功,表明 member 没有在 dict 中出现过,直接向 skiplist 进行插入。
- 如果步骤返回失败,表明以 member 已经在 dict中出现过,则需要先从 skiplist 中删除,然后以现在的 score 值重新插入。
3) ZADD myzset 3 “three”
4) ZADD myzset 2 “two”
分享到:
相关推荐
### Redis内存存储结构分析 #### 一、Redis内存存储总体结构概述 Redis是一种高性能的键值存储系统,它将所有数据存储在内存中,从而实现了非常快的数据读写速度。然而,这种设计也有其局限性,例如对于拥有大量...
### Redis内存模型介绍 #### 一、Redis简介与数据类型 **Redis** 是一款高性能的键值对存储系统,它采用内存作为主要存储介质,并提供了丰富的数据结构支持,包括字符串(Strings)、哈希(Hashes)、列表(Lists)、...
总结来说,通过Key前缀分析Redis内存占用并导出结果到CSV文件,是一个涉及Redis内存管理、PHP编程、数据遍历、排序算法和文件操作等多个IT领域的综合实践。了解并掌握这些知识点,对于优化Redis的内存使用,提升系统...
综上所述,Redis 2.4.1作为一个内存数据库,通过其内存存储、持久化、多数据结构、发布订阅、主从复制以及丰富的API支持,成为了一个功能强大、性能优秀的数据存储解决方案。尽管随着时间的推移,Redis已经发展到了...
在使用Redis的过程中,他们遇到了一些问题,特别是关于Redis内存占用飙升的问题。下面我们将深入探讨这个问题以及可能的解决方案。 Redis内存占用飙升的原因多种多样,可能是由于以下几点: 1. **数据结构不当**:...
在Redis内存分布分析中,涉及到的核心知识点包括Redis的数据结构存储、数据类型操作、内存管理机制以及命令执行过程解析。 首先,我们来了解Redis的数据结构存储。Redis作为一个高性能的键值存储系统,其内部通过...
1. **Redis基本操作**:Redis是一个开源的内存数据结构存储系统,可以当作数据库、缓存和消息中间件。在Java中,我们通常使用Jedis库来与Redis进行交互。在示例中,`setJsonString`方法用于设置键值对,`...
这种做法通常用于临时存储或缓存大量数据,尤其是在高并发场景下,Redis由于其内存存储和快速响应的特点,成为理想的解决方案。 首先,让我们了解一下C# Winform。C#是一种面向对象的编程语言,广泛应用于Windows...
Redis,全称Remote Dictionary Server,是一款高性能的键值对存储系统,被广泛应用于缓存、数据库、消息中间件等场景。其数据结构丰富,支持字符串、哈希、列表、集合和有序集合等多种类型,使得Redis在处理各种复杂...
自定义Redis存储实现允许开发者根据自己的需求配置缓存策略,例如设置过期时间、调整数据结构或实现复杂的操作逻辑。 在使用这个缓存库时,开发者可以首先配置内存LRU缓存,用于处理快速响应的短期数据存储。当需要...
本文将详细解释几个用于检查Redis内存状态的命令。 首先,`info memory`是查看Redis内存使用情况的基础命令。执行`redis-cli info memory`会返回一系列内存统计数据,其中包括: 1. `used_memory`: 表示Redis分配...
Redis作为一款优秀的键值存储系统,凭借其内存存储、高性能、丰富的数据结构以及强大的灵活性,在构建各种高性能应用程序时发挥着重要作用。利用好官方文档、社区资源和辅助工具,开发者可以更加高效地利用Redis的...
- **数据持久化**:与仅支持内存存储的Memcached不同,Redis支持将数据周期性地写入磁盘或通过追加记录文件的方式实现数据的持久化。此外,Redis还支持主从复制机制(master-slave replication),使得数据能够在多个...
在描述中提到,Redis能够减轻数据库的访问压力,这是因为Redis将数据存储在内存中,读写速度远超传统的磁盘存储数据库。当需要频繁访问的数据暂时存放在Redis中,可以显著减少对后端数据库的I/O操作,从而避免数据库...
Redis是一款高性能的键值存储系统,它以其丰富的数据结构、高效的数据操作以及强大的持久化机制在现代互联网架构中扮演着重要角色。本篇文章主要探讨Redis的核心数据结构和核心原理,以及如何利用IO多路复用技术处理...
首先,MySQL作为关系型数据库,主要用于存储结构化数据,如用户账户信息、订单详情等。它支持事务处理,能够确保数据的一致性和完整性。在处理复杂查询和报表生成方面,MySQL表现优秀,尤其适合需要遵循ACID(原子性...
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/...