摘要: 对FFmpeg多媒体解决方案中的视频编解码流程进行研究。结合对S3C6410处理器视频硬件编解码方法的分析,阐述了嵌入式Linux下基于FFmpeg的H.264视频硬件编解码在S3C6410处理器上的实现方法,为嵌入式多媒体开发提供参考。
引言
目前,智能手机、PDA和平板电脑等越来越多的嵌入式设备支持高清视频采集和播放功能,高清视频的采集或播放功能正广泛用于游戏设备、监控设备、视频会议设备和数字网络电视等嵌入式系统中。这些功能的实现建立在高性能视频硬件编解码技术基础之上。本文阐述了基于FFmpeg的H.264视频硬件编解码在S3C6410处理器上的实现方法,为数字娱乐、视频监控和视频通信系统开发过程中的高清视频硬件编解码的实现提供参考。
FFmpeg[1]是一个开源免费跨平台的视频和音频流方案,属于自由软件。它包含非常先进的音频/视频编解码库libavcodec,提供了录制、转换以及流化音视频的完整解决方案。FFmpeg支持MPEG4、FLV等40多种编码,以及AVI、ASF等90多种解码。目前国内较为流行的播放器暴风影音和国外较为流行的Mplayer在音频/视频编解码方面都用到了FFmpeg。
S3C6410[2]是三星公司推出的应用处理器芯片,基于ARM11架构,主频最高可达800 MHz。它具有多媒体硬件加速功能,其中包括大于30 fps的MPEG4 SP、H.264/263 BP和VC1(WMV9)多种视频硬件编解码,可用于手机、平板电脑和游戏机等手持移动设备和其他高性能嵌入式设备。国产手机魅族M8的处理器使用的就是S3C6410。
虽然FFmpeg提供了简单的应用程序编程接口(API),可以很方便地实现多种格式的视频软件编解码[3],但是软件编解码在处理复杂视频编解码(如H.264)时无法运用到处理速度不快、内存空间不多的嵌入式环境中。为了在资源有限的嵌入式环境下使用FFmpeg实现复杂视频编解码,下面在分析FFmpeg视频编码流程和S3C6410处理器视频编解码方法的基础上,阐述嵌入式Linux操作系统下基于FFmpeg的H.264硬件编解码在S3C6410处理器上的实现方法。
1 FFmpeg视频编解码流程
FFmpeg主要有encode/decode、muxer/demuxer和内存操作3个模块。encode/decode模块用于音视频的编码和解码,存放在libavcodec子目录中;muxer/demuxer模块用于音频和视频的合并与分离(也称混合器模块),存放在libavformat目录中;内存等常用模块存放于libavutil目录中。下面以解码过程为例分析FFmpeg视频编解码流程。
解码基本流程共分4步:
① 注册所有可能用到的编解码器和混合器。av_register_all(void)函数中通过执行 REGISTER_MUXDEMUX(X,x)和REGISTER_ENCDEC(X,x),把所有FFmpeg支持的混合器和编解码器相关信息以链式的结构存放在内存中。
② 打开视频文件。av_open_input_file(AVFormatContext **ic_ptr,const char *filename,AVInputFormat *fmt,int buf_size,AVFormatParameters *ap)函数中侦测文件的格式,根据文件格式从链式的混合器中找到相对应的混合器(demuxer)并分离出视频信息。
③ 获取视频信息。通过av_find_stream_info(AVFormatContext *ic)函数获取视频格式。根据视频格式,在链式的视频解码器中找到相应的视频解码器,并通过avcodec_open(AVCodecContext *avctx,AVCodec *codec)函数将解码器打开用于下一步视频的解码。
④ 解码一帧视频,通过 avcodec_decode_video(AVCodecContext *avctx,AVFrame *picture,int *got_picture_ptr,const uint8_t *buf,int buf_size)函数解码一帧视频。
FFmpeg的编码过程与解码过程类似,不同的是第3步根据要求编码的格式在链式的视频编码器中找到相应的视频编码器,并执行编码过程。
通过以上对FFmpeg视频编解码流程分析可以知道,为了在FFmpeg中添加自定义的视频编解码器,并在程序运行时使用这个编解码器,关键在于如下两点:
① 根据FFmpeg对编解码器的描述,实现自定义编解码器。
② 通过REGISTER_ENCDEC(X,x)函数将自定义的视频编解码器添加到视频编解码器链中。在获取视频信息时,保证需要编码或解码的视频能找到视频编解码器链中自定义的视频编解码器。
2 S3C6410处理器视频编解码方法
S3C6410视频编解码软件架构[4]如图1所示。底层为操作系统空间,上层为用户空间,视频编解码器通过驱动和操作系统以设备文件的形式使用,使用的方法和普通文件一样,包括文件打开和关闭、文件读写和输入/输出控制(ioctl,input/output control)。
图1 S3C6410视频编解码软件架构
具体操作方法如下:
① 通过open函数打开编解码器设备文件;
② 使用mmap方法在用户空间和驱动空间之间映射输入/输出缓存空间,这样做的好处是可以快速进行数据输入/输出;
③ 通过ioctl设备编解码参数,初始化编解码器;
④ 输入数据,通过ioctl执行编解码过程,输出数据;
⑤ 通过close方法关闭编解码器设备文件。
值得注意的是,无论编码还是解码,处理的数据都是以一帧帧的形式操作的,所以第4步是一个不断循环的过程,直到所有数据处理完成。另外,虽然编解码器以设备文件的形式使用,但是它不能使用标准的文件读写操作,查看编解码的设备驱动可以发现,其文件读写函数是空的,这一点三星公司的开发文档并没有说明。
3 H.264硬件编解码实现
FFmpeg的H.264硬件编解码[5]实现就是自定义一个视频编解码器,加入到FFmpeg库中。这个视频编解码器使用S3C6410处理视频硬件编解码功能来实现H.264的视频编码和解码过程,这样使用FFmpeg库的多媒体程序可以用访问FFmpeg其他编解码器一样的方法使用这个自定义的编解码器。添加自定义编解码器的关键是根据FFmpeg中对编解码的描述定义编解码器,并实现定义中的相关函数。
在libavcodec/avcodec.h中的AVCodec结构体是定义FFmpeg编解码器的关键结构体,包括编解码器的名字、类型(声音/视频)、编解码器的识别号(CodecID)、支持格式和一些用于初始化、编码、解码和关闭的函数指针。
typedef struct AVCodec {
const char *name;
enum CodecType type;
enum CodecID id;
int priv_data_size;
int (*init)(AVCodecContext *);
int (*encode)(AVCodecContext *,uint8_t *buf,int buf_size,void *data);
int (*close)(AVCodecContext *);
int (*decode)(AVCodecContext *,void *outdata,int *outdata_size,
uint8_t *buf,int buf_size);
int capabilities;
struct AVCodec *next;
void (*flush)(AVCodecContext *);
const AVRational *supported_framerates;
const enum PixelFormat *pix_fmts;
} AVCodec;
H.264硬件编解码器定义如下:
AVCodec s3cx264_encoder = {
.name="s3cx264",
.type=AVMEDIA_TYPE_VIDEO,
.id=CODEC_ID_H264,
.init=X264_init,
.encode=X264_frame,
.decode=X264_decode,
.close=X264_close,
…
};
解码器的名字为s3cx264,类型为视频。CodecID为H264,表示这个解码器用于H.264视频编解码。初始化、编码、解码和关闭函数指针分别指向X264_init、X264_frame、X264_decodec和X264_close函数。
添加s3cx264编解码器到编解器链中,关键是通过修改libavcodec/allcodecs.c文件实现,修改如下:
REGISTER_ENCDEC (ASV1,asv1);
REGISTER_ENCDEC (S3CX264,s3cx264);
//添加s3cx264编解码器
REGISTER_ENCDEC (ASV2,asv2);
这样,在程序运行时调用av_register_all(void)函数后,就可以把自定义的编解码器s3cx264添加到FFmpeg存放在内存中的解编码器链中。值得提出的是,对同一个视频格式FFmpeg有多个编解码器与之相对应。如H.264格式的视频,FFmpeg本身就带有对应的软解码器,现在添加了硬解码器,为了避免不确定是哪一个解码器在执行,可以把自定义的硬件编解码器在注册时放在注册过程的最前面,这样编解码器在添加到解编器链中时就会放在靠前的位置,查找时就可以优于软件解码器找到硬解码器。
把硬件编解码器s3cx264注册到编解码器链后,还要完成X264_init、X264_frame、X264_decodec和X264_close函数,编解码器才能正常工作。以下结合前面对S3C6410视频编解码过程的分析,以编码为例详细阐述实现过程。
定义X264Context结构体,保存设备文件描述符、编码参数和输入/输出地址等信息,用于FFmpeg模块间数据的传递:
typedef struct X264Context {
int dev_fd;
uint8_t *addr;
s3c_mfc_enc_init_arg_t enc_init;
s3c_mfc_enc_exe_arg_t enc_exe;
s3c_mfc_get_buf_addr_arg_t get_buf_addr;
uint8_t *in_buf,*out_buf;
AVFrame out_pic;
} X264Context;
X264_init实现的是编码器初始化过程, 用于编码器设备文件的打开、内存空间的映射、编码参数设置和获取编解码数据输入/输出地址。
static av_cold int X264_init(AVCodecContext *avctx){
X264Context *x4 = avctx>priv_data;
//打开编码器设备文件
x4>dev_fd = open(MFC_DEV_NAME,O_RDWR|O_NDELAY);
//内存空间映射
x4>addr = (uint8_t *) mmap(0,BUF_SIZE,PROT_READ |PROT_WRITE,MAP_SHARED,x4>dev_fd,0);
//编码参数设置
ioctl(x4>dev_fd,S3C_MFC_IOCTL_MFC_H264_ENC_INIT,&x4>enc_init);
//获取输入/输出地址
x4>get_buf_addr.in_usr_data = (int)x4>addr;
ioctl(x4>dev_fd,S3C_MFC_IOCTL_MFC_GET_YUV_BUF_ADDR,&x4>get_buf_addr);
x4>in_buf = (uint8_t *)x4>get_buf_addr.out_buf_addr;
x4>get_buf_addr.in_usr_data = (int)x4>addr;
ioctl(x4>dev_fd,S3C_MFC_IOCTL_MFC_GET_LINE_BUF_ADDR,&x4>get_buf_addr);
x4>out_buf = (uint8_t *)x4>get_buf_addr.out_buf_addr;
return 0;
}
ioctl的参数为S3C_MFC_IOCTL_MFC_H264_ENC_INIT,表示使用H.264编码。
X264_frame函数执行编码过程。需要注意的是data参数保存了需要编码的数据,是一个四维的数组,要把它转换成一维数组用于S3C6410编码器输入。另外,编码数据存在空的情况,也就是空帧。这是需要处理的,方法是返回“0”,表示没有输出数据,否则程序运行时会出现段错误。
static int X264_frame(AVCodecContext *ctx,uint8_t *buf,int bufsize,void *data){
……
//空间转换
if(frame){
memcpy(x4>in_buf,frame>data[0],ctx>width*ctx>height);
memcpy(x4>in_buf+ctx>width*ctx>height,frame>data[1],ctx>width*ctx>height/4);
memcpy(x4>in_buf+ctx>width*ctx>height+ctx>width*ctx>height/4,frame>data[2],
ctx>width*ctx>height/4);
}
else
return 0;//空帧,返回
//执行编码过程
ioctl(x4>dev_fd,S3C_MFC_IOCTL_MFC_H264_ENC_EXE,&x4>enc_exe);
//编码数据输出
bufsize = x4>enc_exe.out_encoded_size;
memcpy(buf,x4>out_buf,bufsize);
……
return bufsize;
}
X264_close关闭函数用于编码结束后的资源释放,包括取消空间映射和关闭设备文件。
static av_cold int X264_close(AVCodecContext *avctx){
…
//取消空间映射
munmap(x4>addr,BUF_SIZE);
//关闭设备文件
close(x4>dev_fd);
return 0;
}
解码函数的实现过程类似于编码函数,包括空间转换、执行解码和解码数据输出。初始化时使用S3C_MFC_IOCTL_MFC_H264_DEC_INIT参数,执行时使用S3C_MFC_IOCTL_MFC_H264_ENC_EXE参数。
4 运行测试
s3cx264编解码器添加到FFmpeg后,可以通过以下方式测试:
① 用如下命令编译FFmpeg。
./configure enablecrosscompile
arch=armv6 cpu=armv6
targetos=linux crossprefix
=/usr/local/arm/4.3.2/bin/
armlinux
② 运行 ./ffmpeg codecs查看可以找到s3cx264编解码器,如图2所示。
图2 FFmpeg显示s3cx264编解码器信息
③ 结合USB摄像头测试s3cx264编码。运行 ./ffmpeg s 320x240 r 50 f video4linux2 i /dev/video2 vcodec s3cx264 test.mp4 可以看到FFmpegg正使用s3cx264编码器将USB摄像头采集的数据编码压缩成test.mp4文件。test.mp4能够正常播放显示。
以上测试说明已经成功地将s3cx264硬件视频编码器添加到了FFmpeg中,能够编码视频数据,可以运用到其他使用FFmpeg库的多媒体程序中。
结语
对于多媒体开发来说,编解码时使用FFmpeg多媒体库是一个不错的选择,支持较多的音视频编解码,编程接口简单易用。了解FFmpeg编解码过程,熟悉FFmpeg硬件编解码器添加方法,对多媒体开发,尤其是资源有限的嵌入式多媒体开发有很大帮助。本文通过分析FFmpeg视频编解码过程和三星S3C6410处理器视频硬件编解码方法,在FFmpeg库中成功添加S3C6410硬件编解码器,使FFmpeg库具有H.264视频格式的硬件编解码能力,可运用于游戏设备、监控设备、视频会议设备和数字网络电视等嵌入式系统中,同时也为其他嵌入式设备添加别的视频格式的编解码器到FFmpeg多媒体库提供了参考。
参考文献
[1] http://www.ffmpeg.org/.
[2] Samsung.S3C6410 Datasheet,2010.
[3] 李少春.基于FFMPEG的嵌入式视频监控系统[J].电子技术,2007(3):3437.
[4] API Document S3C6400/6410 MultiFormat Codec,2008.
[5] FFmpeg codec HOWTO[EB/OL].2010[201101].http://wiki.multimedia.cx/index.php?title=FFmpeg_codec_HOWTO/.
刘建敏(硕士生)、杨斌(教授),主要研究方向为单片机与嵌入式系统及应用。
分享到:
相关推荐
Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe
基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf
内容概要:本文详细介绍了如何利用MATLAB/Simulink 2018a进行单机无穷大系统的暂态稳定性仿真。主要内容包括搭建同步发电机模型、设置无穷大系统等效电源、配置故障模块及其控制信号、优化求解器设置以及绘制和分析转速波形和摇摆曲线。文中还提供了多个实用脚本,如故障类型切换、摇摆曲线计算和极限切除角的求解方法。此外,作者分享了一些实践经验,如避免常见错误和提高仿真效率的小技巧。 适合人群:从事电力系统研究和仿真的工程师和技术人员,尤其是对MATLAB/Simulink有一定基础的用户。 使用场景及目标:适用于需要进行电力系统暂态稳定性分析的研究项目或工程应用。主要目标是帮助用户掌握单机无穷大系统的建模和仿真方法,理解故障对系统稳定性的影响,并能够通过仿真结果评估系统的性能。 其他说明:文中提到的一些具体操作和脚本代码对于初学者来说可能会有一定的难度,建议结合官方文档或其他教程一起学习。同时,部分技巧和经验来自于作者的实际操作,具有一定的实用性。
KUKA机器人相关资料
基于DLR模型的PM10–能见度–湿度相关性 研究.pdf
内容概要:本文详细介绍了如何使用MATLAB/Simulink进行光伏并网系统的最大功率点跟踪(MPPT)仿真,重点讨论了电导增量法的应用。首先阐述了电导增量法的基本原理,接着展示了如何在Simulink中构建光伏电池模型和MPPT控制系统,包括Boost升压电路的设计和PI控制参数的设定。随后,通过仿真分析了不同光照强度和温度条件对光伏系统性能的影响,验证了电导增量法的有效性,并提出了针对特定工况的优化措施。 适合人群:从事光伏系统研究和技术开发的专业人士,尤其是那些希望通过仿真工具深入理解MPPT控制机制的人群。 使用场景及目标:适用于需要评估和优化光伏并网系统性能的研发项目,旨在提高系统在各种环境条件下的最大功率点跟踪效率。 其他说明:文中提供了详细的代码片段和仿真结果图表,帮助读者更好地理解和复现实验过程。此外,还提到了一些常见的仿真陷阱及解决方案,如变步长求解器的问题和PI参数整定技巧。
KUKA机器人相关文档
内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
linux之用户管理教程.md
内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。
基于STM32的循迹避障小车 主控:STM32 显示:OLED 电源模块 舵机云台 超声波测距 红外循迹模块(3个,左中右) 蓝牙模块 按键(6个,模式和手动控制小车状态) TB6612驱动的双电机 功能: 该小车共有3种模式: 自动模式:根据红外循迹和超声波测距模块决定小车的状态 手动模式:根据按键的状态来决定小车的状态 蓝牙模式:根据蓝牙指令来决定小车的状态 自动模式: 自动模式下,检测距离低于5cm小车后退 未检测到任何黑线,小车停止 检测到左边或左边+中间黑线,小车左转 检测到右边或右边+中间黑线,小车右转 检测到中边或左边+中间+右边黑线,小车前进 手动模式:根据按键的状态来决定小车的状态 蓝牙模式: //需切换为蓝牙模式才能指令控制 *StatusX X取值为0-4 0:小车停止 1:小车前进 2:小车后退 3:小车左转 4:小车右转
矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用
内容概要:本文探讨了基于IEEE33节点的主动配电网优化方法,旨在通过合理的调度模型降低配电网的总运行成本。文中详细介绍了模型的构建,包括风光发电、储能装置、柴油发电机和燃气轮机等多种分布式电源的集成。为了实现这一目标,作者提出了具体的约束条件,如储能充放电功率限制和潮流约束,并采用了粒子群算法进行求解。通过一系列实验验证,最终得到了优化的分布式电源运行计划,显著降低了总成本并提高了系统的稳定性。 适合人群:从事电力系统优化、智能电网研究的专业人士和技术爱好者。 使用场景及目标:适用于需要优化配电网运行成本的研究机构和企业。主要目标是在满足各种约束条件下,通过合理的调度策略使配电网更加经济高效地运行。 其他说明:文章不仅提供了详细的理论推导和算法实现,还分享了许多实用的经验技巧,如储能充放电策略、粒子群算法参数选择等。此外,通过具体案例展示了不同电源之间的协同作用及其经济效益。
KUKA机器人相关文档
内容概要:本文详细介绍了将光热电站(CSP)和有机朗肯循环(ORC)集成到综合能源系统中的优化建模方法。主要内容涵盖系统的目标函数设计、关键设备的约束条件(如CSP储热罐、ORC热电耦合)、以及具体实现的技术细节。文中通过MATLAB和YALMIP工具进行建模,采用CPLEX求解器解决混合整数规划问题,确保系统在经济性和环境效益方面的最优表现。此外,文章还讨论了碳排放惩罚机制、风光弃能处理等实际应用场景中的挑战及其解决方案。 适合人群:从事综合能源系统研究的专业人士,尤其是对光热发电、余热利用感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要评估和优化包含多种能源形式(如光伏、风电、燃气锅炉等)在内的复杂能源系统的项目。目标是在满足供电供热需求的同时,最小化运行成本并减少碳排放。 其他说明:文中提供了大量具体的MATLAB代码片段作为实例,帮助读者更好地理解和复现所提出的优化模型。对于初学者而言,建议从简单的确定性模型入手,逐渐过渡到更复杂的随机规划和鲁棒优化。
网站设计与管理作业一.ppt
内容概要:本文详细介绍了如何使用MATLAB搭建双闭环Buck电路的仿真模型。首先定义了主电路的关键参数,如输入电压、电感、电容等,并解释了这些参数的选择依据。接着分别对电压外环和电流内环进行了PI控制器的设计,强调了电流环响应速度需要显著高于电压环以确保系统的稳定性。文中还讨论了仿真过程中的一些关键技术细节,如PWM死区时间的设置、低通滤波器的应用以及参数调整的方法。通过对比单闭环和双闭环系统的性能,展示了双闭环方案在应对负载突变时的优势。最后分享了一些调试经验和常见问题的解决方案。 适合人群:从事电力电子、电源设计领域的工程师和技术人员,尤其是有一定MATLAB基础的读者。 使用场景及目标:适用于需要进行电源管理芯片设计验证、电源系统性能评估的研究人员和工程师。主要目标是提高电源系统的稳定性和响应速度,特别是在负载变化剧烈的情况下。 其他说明:文章不仅提供了详细的理论分析,还包括了大量的代码片段和具体的调试步骤,帮助读者更好地理解和应用所学知识。同时提醒读者注意仿真与实际情况之间的差异,鼓励在实践中不断探索和改进。
内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。
内容概要:本文详细介绍了如何利用Simulink和Carsim进行联合仿真,实现基于PID(比例-积分-微分)和MPC(模型预测控制)的自适应巡航控制系统。首先阐述了Carsim参数设置的关键步骤,特别是cpar文件的配置,包括车辆基本参数、悬架系统参数和转向系统参数的设定。接着展示了Matlab S函数的编写方法,分别针对PID控制和MPC控制提供了详细的代码示例。随后讨论了Simulink中车辆动力学模型的搭建,强调了模块间的正确连接和参数设置的重要性。最后探讨了远程指导的方式,帮助解决仿真过程中可能出现的问题。 适合人群:从事汽车自动驾驶领域的研究人员和技术人员,尤其是对Simulink和Carsim有一定了解并希望深入学习联合仿真的从业者。 使用场景及目标:适用于需要验证和优化自适应巡航控制、定速巡航及紧急避撞等功能的研究和开发项目。目标是提高车辆行驶的安全性和舒适性,确保控制算法的有效性和可靠性。 其他说明:文中不仅提供了理论知识,还有大量实用的代码示例和避坑指南,有助于读者快速上手并应用于实际工作中。此外,还提到了远程调试技巧,进一步提升了仿真的成功率。
02.第18讲一、三重积分02.mp4