`

java的volatile详解1

 
阅读更多

转:http://blog.sina.com.cn/s/blog_5a4267fa0100axw2.html

 

java中的volatile的用法

我们知道,在Java中设置变量值的操作,除了long和double类型的变量外都是原子操作,也就是说,对于变量值的简单读写操作没有必要进行同步。

这在JVM 1.2之前,Java的内存模型实现总是从主存读取变量,是不需要进行特别的注意的。而随着JVM的成熟和优化,现在在多线程环境下volatile关键字的使用变得非常重要。

在当前的Java内存模型下,线程可以把变量保存在本地内存(比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。

要解决这个问题,只需要像在本程序中的这样,把该变量声明为volatile(不稳定的)即可,这就指示JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。一般说来,多任务环境下各任务间共享的标志都应该加volatile修饰。

Volatile修饰的成员变量在每次被线程访问时,都强迫从共享内存中重读该成员变量的值。而且,当成员变量发生变化时,强迫线程将变化值回写到共享内存。这样在任何时刻,两个不同的线程总是看到某个成员变量的同一个值。

Java语言规范中指出:为了获得最佳速度,允许线程保存共享成员变量的私有拷贝,而且只当线程进入或者离开同步代码块时才与共享成员变量的原始值对比。

这样当多个线程同时与某个对象交互时,就必须要注意到要让线程及时的得到共享成员变量的变化。

而volatile关键字就是提示VM:对于这个成员变量不能保存它的私有拷贝,而应直接与共享成员变量交互。

使用建议:在两个或者更多的线程访问的成员变量上使用volatile。当要访问的变量已在synchronized代码块中,或者为常量时,不必使用。

由于使用volatile屏蔽掉了VM中必要的代码优化,所以在效率上比较低,因此一定在必要时才使用此关键字。
Java™ 语言包含两种内在的同步机制:同步块(或方法)和 volatile 变量。这两种机制的提出都是为了实现代码线程的安全性。其中 Volatile 变量的同步性较差(但有时它更简单并且开销更低),而且其使用也更容易出错。在这期的 Java 理论与实践 中,Brian Goetz 将介绍几种正确使用 volatile 变量的模式,并针对其适用性限制提出一些建议。

Java 语言中的 volatile 变量可以被看作是一种 “程度较轻的 synchronized”;与 synchronized 块相比,volatile 变量所需的编码较少,并且运行时开销也较少,但是它所能实现的功能也仅是 synchronized 的一部分。本文介绍了几种有效使用 volatile 变量的模式,并强调了几种不适合使用 volatile 变量的情形。

锁提供了两种主要特性:互斥(mutual exclusion)可见性(visibility)。互斥即一次只允许一个线程持有某个特定的锁,因此可使用该特性实现对共享数据的协调访问协议,这样,一次就只有一个线程能够使用该共享数据。可见性要更加复杂一些,它必须确保释放锁之前对共享数据做出的更改对于随后获得该锁的另一个线程是可见的 —— 如果没有同步机制提供的这种可见性保证,线程看到的共享变量可能是修改前的值或不一致的值,这将引发许多严重问题。

Volatile 变量

Volatile 变量具有 synchronized 的可见性特性,但是不具备原子特性。这就是说线程能够自动发现 volatile 变量的最新值。Volatile 变量可用于提供线程安全,但是只能应用于非常有限的一组用例:多个变量之间或者某个变量的当前值与修改后值之间没有约束。因此,单独使用 volatile 还不足以实现计数器、互斥锁或任何具有与多个变量相关的不变式(Invariants)的类(例如 “start <=end”)。

出于简易性或可伸缩性的考虑,您可能倾向于使用 volatile 变量而不是锁。当使用 volatile 变量而非锁时,某些习惯用法(idiom)更加易于编码和阅读。此外,volatile 变量不会像锁那样造成线程阻塞,因此也很少造成可伸缩性问题。在某些情况下,如果读操作远远大于写操作,volatile 变量还可以提供优于锁的性能优势。

正确使用 volatile 变量的条件

您只能在有限的一些情形下使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:

  • 对变量的写操作不依赖于当前值。
  • 该变量没有包含在具有其他变量的不变式中。

 

实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。

第一个条件的限制使 volatile 变量不能用作线程安全计数器。虽然增量操作(x++)看上去类似一个单独操作,实际上它是一个由读取-修改-写入操作序列组成的组合操作,必须以原子方式执行,而 volatile 不能提供必须的原子特性。实现正确的操作需要使 x 的值在操作期间保持不变,而 volatile 变量无法实现这点。(然而,如果将值调整为只从单个线程写入,那么可以忽略第一个条件。)

大多数编程情形都会与这两个条件的其中之一冲突,使得 volatile 变量不能像 synchronized 那样普遍适用于实现线程安全。清单 1 显示了一个非线程安全的数值范围类。它包含了一个不变式 —— 下界总是小于或等于上界。


清单 1. 非线程安全的数值范围类
 @NotThreadSafe public class NumberRange { private int lower, upper; public int getLower() { return lower; } public int getUpper() { return upper; } public void setLower(int value) { if (value > upper) throw new IllegalArgumentException(...); lower = value; } publi  void setUpper(int value  { 
             (...); upper = value; } }  

这种方式限制了范围的状态变量,因此将 lower 和 upper 字段定义为 volatile 类型不能够充分实现类的线程安全;从而仍然需要使用同步。否则,如果凑巧两个线程在同一时间使用不一致的值执行 setLowersetUpper 的话,则会使范围处于不一致的状态。例如,如果初始状态是 (0, 5),同一时间内,线程 A 调用 setLower(4) 并且线程 B 调用 setUpper(3),显然这两个操作交叉存入的值是不符合条件的,那么两个线程都会通过用于保护不变式的检查,使得最后的范围值是 (4, 3) —— 一个无效值。至于针对范围的其他操作,我们需要使 setLower()setUpper() 操作原子化 —— 而将字段定义为 volatile 类型是无法实现这一目的的。

性能考虑

使用 volatile 变量的主要原因是其简易性:在某些情形下,使用 volatile 变量要比使用相应的锁简单得多。使用 volatile 变量次要原因是其性能:某些情况下,volatile 变量同步机制的性能要优于锁。

很难做出准确、全面的评价,例如 “X 总是比 Y 快”,尤其是对 JVM 内在的操作而言。(例如,某些情况下 VM 也许能够完全删除锁机制,这使得我们难以抽象地比较 volatilesynchronized 的开销。)就是说,在目前大多数的处理器架构上,volatile 读操作开销非常低 —— 几乎和非 volatile 读操作一样。而 volatile 写操作的开销要比非 volatile 写操作多很多,因为要保证可见性需要实现内存界定(Memory Fence),即便如此,volatile 的总开销仍然要比锁获取低。

volatile 操作不会像锁一样造成阻塞,因此,在能够安全使用 volatile 的情况下,volatile 可以提供一些优于锁的可伸缩特性。如果读操作的次数要远远超过写操作,与锁相比,volatile 变量通常能够减少同步的性能开销。

正确使用 volatile 的模式

很多并发性专家事实上往往引导用户远离 volatile 变量,因为使用它们要比使用锁更加容易出错。然而,如果谨慎地遵循一些良好定义的模式,就能够在很多场合内安全地使用 volatile 变量。要始终牢记使用 volatile 的限制 —— 只有在状态真正独立于程序内其他内容时才能使用 volatile —— 这条规则能够避免将这些模式扩展到不安全的用例。

模式 #1:状态标志

也许实现 volatile 变量的规范使用仅仅是使用一个布尔状态标志,用于指示发生了一个重要的一次性事件,例如完成初始化或请求停机。

很多应用程序包含了一种控制结构,形式为 “在还没有准备好停止程序时再执行一些工作”,如清单 2 所示:


清单 2. 将 volatile 变量作为状态标志使用
 volatile boolean shutdownRequested; ... public void shutdown() { shutdownRequested = true; } public void doWork() { while (!shutdownRequested) { // do stuff } }  

很可能会从循环外部调用 shutdown() 方法 —— 即在另一个线程中 —— 因此,需要执行某种同步来确保正确实现 shutdownRequested 变量的可见性。(可能会从 JMX 侦听程序、GUI 事件线程中的操作侦听程序、通过 RMI 、通过一个 Web 服务等调用)。然而,使用 synchronized 块编写循环要比使用清单 2 所示的 volatile 状态标志编写麻烦很多。由于 volatile 简化了编码,并且状态标志并不依赖于程序内任何其他状态,因此此处非常适合使用 volatile。

这种类型的状态标记的一个公共特性是:通常只有一种状态转换;shutdownRequested 标志从 false 转换为 true,然后程序停止。这种模式可以扩展到来回转换的状态标志,但是只有在转换周期不被察觉的情况下才能扩展(从 falsetrue,再转换到 false)。此外,还需要某些原子状态转换机制,例如原子变量。

模式 #2:一次性安全发布(one-time safe publication)

缺乏同步会导致无法实现可见性,这使得确定何时写入对象引用而不是原语值变得更加困难。在缺乏同步的情况下,可能会遇到某个对象引用的更新值(由另一个线程写入)和该对象状态的旧值同时存在。(这就是造成著名的双重检查锁定(double-checked-locking)问题的根源,其中对象引用在没有同步的情况下进行读操作,产生的问题是您可能会看到一个更新的引用,但是仍然会通过该引用看到不完全构造的对象)。

实现安全发布对象的一种技术就是将对象引用定义为 volatile 类型。清单 3 展示了一个示例,其中后台线程在启动阶段从数据库加载一些数据。其他代码在能够利用这些数据时,在使用之前将检查这些数据是否曾经发布过。


清单 3. 将 volatile 变量用于一次性安全发布
 public class BackgroundFloobleLoader { public volatile Flooble theFlooble; public void initInBackground() { // do lots of stuff theFlooble = new Flooble(); // this is the only write to theFlooble } } public class SomeOtherClass { public void doWork() { while (true) { // do some stuff... // use the Flooble, but only if it is ready if (floobleLoader.theFlooble != null) doSomething(floobleLoader.theFlooble); } } }  

如果 theFlooble 引用不是 volatile 类型,doWork() 中的代码在解除对 theFlooble 的引用时,将会得到一个不完全构造的 Flooble

该模式的一个必要条件是:被发布的对象必须是线程安全的,或者是有效的不可变对象(有效不可变意味着对象的状态在发布之后永远不会被修改)。volatile 类型的引用可以确保对象的发布形式的可见性,但是如果对象的状态在发布后将发生更改,那么就需要额外的同步。

模式 #3:独立观察(independent observation)

安全使用 volatile 的另一种简单模式是:定期 “发布” 观察结果供程序内部使用。例如,假设有一种环境传感器能够感觉环境温度。一个后台线程可能会每隔几秒读取一次该传感器,并更新包含当前文档的 volatile 变量。然后,其他线程可以读取这个变量,从而随时能够看到最新的温度值。

使用该模式的另一种应用程序就是收集程序的统计信息。清单 4 展示了身份验证机制如何记忆最近一次登录的用户的名字。将反复使用 lastUser 引用来发布值,以供程序的其他部分使用。


清单 4. 将 volatile 变量用于多个独立观察结果的发布
 public class UserManager { public volatile String lastUser; public boolean authenticate(String user, String password) { boolean valid = passwordIsValid(user, password); if (valid) { User u = new User(); activeUsers.add(u); lastUser = user; } return valid; } }  

该模式是前面模式的扩展;将某个值发布以在程序内的其他地方使用,但是与一次性事件的发布不同,这是一系列独立事件。这个模式要求被发布的值是有效不可变的 —— 即值的状态在发布后不会更改。使用该值的代码需要清楚该值可能随时发生变化。

模式 #4:“volatile bean” 模式

volatile bean 模式适用于将 JavaBeans 作为“荣誉结构”使用的框架。在 volatile bean 模式中,JavaBean 被用作一组具有 getter 和/或 setter 方法 的独立属性的容器。volatile bean 模式的基本原理是:很多框架为易变数据的持有者(例如 HttpSession)提供了容器,但是放入这些容器中的对象必须是线程安全的。

在 volatile bean 模式中,JavaBean 的所有数据成员都是 volatile 类型的,并且 getter 和 setter 方法必须非常普通 —— 除了获取或设置相应的属性外,不能包含任何逻辑。此外,对于对象引用的数据成员,引用的对象必须是有效不可变的。(这将禁止具有数组值的属性,因为当数组引用被声明为 volatile 时,只有引用而不是数组本身具有 volatile 语义)。对于任何 volatile 变量,不变式或约束都不能包含 JavaBean 属性。清单 5 中的示例展示了遵守 volatile bean 模式的 JavaBean:


清单 5. 遵守 volatile bean 模式的 Person 对象
 @ThreadSafe public class Person { private volatile String firstName; private volatile String lastName; private volatile int age; public String getFirstName() { return firstName; } public String getLastName() { return lastName; } public int getAge() { return age; } public void setFirstName(String firstName) { this.firstName = firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public void setAge(int age) { this.age = age; } }  

volatile 的高级模式

前面几节介绍的模式涵盖了大部分的基本用例,在这些模式中使用 volatile 非常有用并且简单。这一节将介绍一种更加高级的模式,在该模式中,volatile 将提供性能或可伸缩性优势。

volatile 应用的的高级模式非常脆弱。因此,必须对假设的条件仔细证明,并且这些模式被严格地封装了起来,因为即使非常小的更改也会损坏您的代码!同样,使用更高级的 volatile 用例的原因是它能够提升性能,确保在开始应用高级模式之前,真正确定需要实现这种性能获益。需要对这些模式进行权衡,放弃可读性或可维护性来换取可能的性能收益 —— 如果您不需要提升性能(或者不能够通过一个严格的测试程序证明您需要它),那么这很可能是一次糟糕的交易,因为您很可能会得不偿失,换来的东西要比放弃的东西价值更低。

模式 #5:开销较低的读-写锁策略

目前为止,您应该了解了 volatile 的功能还不足以实现计数器。因为 ++x 实际上是三种操作(读、添加、存储)的简单组合,如果多个线程凑巧试图同时对 volatile 计数器执行增量操作,那么它的更新值有可能会丢失。

然而,如果读操作远远超过写操作,您可以结合使用内部锁和 volatile 变量来减少公共代码路径的开销。清单 6 中显示的线程安全的计数器使用 synchronized 确保增量操作是原子的,并使用 volatile 保证当前结果的可见性。如果更新不频繁的话,该方法可实现更好的性能,因为读路径的开销仅仅涉及 volatile 读操作,这通常要优于一个无竞争的锁获取的开销。


清单 6. 结合使用 volatile 和 synchronized 实现 “开销较低的读-写锁”
 @ThreadSafe public class CheesyCounter { // Employs the cheap read-write lock trick // All mutative operations MUST be done with the 'this' lock held @GuardedBy("this") private volatile int value; public int getValue() { return value; } public synchronized int increment() { return value++; } }  

之所以将这种技术称之为 “开销较低的读-写锁” 是因为您使用了不同的同步机制进行读写操作。因为本例中的写操作违反了使用 volatile 的第一个条件,因此不能使用 volatile 安全地实现计数器 —— 您必须使用锁。然而,您可以在读操作中使用 volatile 确保当前值的可见性,因此可以使用锁进行所有变化的操作,使用 volatile 进行只读操作。其中,锁一次只允许一个线程访问值,volatile 允许多个线程执行读操作,因此当使用 volatile 保证读代码路径时,要比使用锁执行全部代码路径获得更高的共享度 —— 就像读-写操作一样。然而,要随时牢记这种模式的弱点:如果超越了该模式的最基本应用,结合这两个竞争的同步机制将变得非常困难。

结束语

与锁相比,Volatile 变量是一种非常简单但同时又非常脆弱的同步机制,它在某些情况下将提供优于锁的性能和伸缩性。如果严格遵循 volatile 的使用条件 —— 即变量真正独立于其他变量和自己以前的值 —— 在某些情况下可以使用 volatile 代替 synchronized 来简化代码。然而,使用 volatile 的代码往往比使用锁的代码更加容易出错。本文介绍的模式涵盖了可以使用 volatile 代替 synchronized 的最常见的一些用例。遵循这些模式(注意使用时不要超过各自的限制)可以帮助您安全地实现大多数用例,使用 volatile 变量获得更佳性能。

分享到:
评论

相关推荐

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf

    电力市场领域中基于CVaR风险评估的省间交易商最优购电模型研究与实现

    内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。

    MATLAB/Simulink平台下四机两区系统风储联合调频技术及其高效仿真实现

    内容概要:本文探讨了在MATLAB/Simulink平台上针对四机两区系统的风储联合调频技术。首先介绍了四机两区系统作为经典的电力系统模型,在风电渗透率增加的情况下,传统一次调频方式面临挑战。接着阐述了风储联合调频技术的应用,通过引入虚拟惯性控制和下垂控制策略,提高了系统的频率稳定性。文章展示了具体的MATLAB/Simulink仿真模型,包括系统参数设置、控制算法实现以及仿真加速方法。最终结果显示,在风电渗透率为25%的情况下,通过风储联合调频,系统频率特性得到显著提升,仿真时间缩短至5秒以内。 适合人群:从事电力系统研究、仿真建模的技术人员,特别是关注风电接入电网稳定性的研究人员。 使用场景及目标:适用于希望深入了解风储联合调频机制及其仿真实现的研究人员和技术开发者。目标是掌握如何利用MATLAB/Simulink进行高效的电力系统仿真,尤其是针对含有高比例风电接入的复杂场景。 其他说明:文中提供的具体参数配置和控制算法有助于读者快速搭建类似的仿真环境,并进行相关研究。同时强调了参考文献对于理论基础建立的重要性。

    永磁同步电机无感控制:高频方波注入与滑膜观测器结合实现及其应用场景

    内容概要:本文介绍了永磁同步电机(PMSM)无感控制技术,特别是高频方波注入与滑膜观测器相结合的方法。首先解释了高频方波注入法的工作原理,即通过向电机注入高频方波电压信号,利用电机的凸极效应获取转子位置信息。接着讨论了滑膜观测器的作用,它能够根据电机的电压和电流估计转速和位置,具有较强的鲁棒性。两者结合可以提高无传感器控制系统的稳定性和精度。文中还提供了具体的Python、C语言和Matlab代码示例,展示了如何实现这两种技术。此外,简要提及了正弦波注入的相关论文资料,强调了其在不同工况下的优势。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对永磁同步电机无感控制感兴趣的读者。 使用场景及目标:适用于需要减少传感器依赖、降低成本并提高系统可靠性的情况,如工业自动化设备、电动汽车等领域的电机控制。目标是掌握高频方波注入与滑膜观测器结合的具体实现方法,应用于实际工程项目中。 其他说明:文中提到的高频方波注入和滑膜观测器的结合方式,不仅提高了系统的性能,还在某些特殊情况下表现出更好的适应性。同时,附带提供的代码片段有助于读者更好地理解和实践这一技术。

    MATLAB中扩展卡尔曼滤波与双扩展卡尔曼滤波在电池参数辨识的应用

    内容概要:本文深入探讨了MATLAB中扩展卡尔曼滤波(EKF)和双扩展卡尔曼滤波(DEKF)在电池参数辨识中的应用。首先介绍了EKF的基本原理和代码实现,包括状态预测和更新步骤。接着讨论了DEKF的工作机制,即同时估计系统状态和参数,解决了参数和状态耦合估计的问题。文章还详细描述了电池参数辨识的具体应用场景,特别是针对电池管理系统中的荷电状态(SOC)估计。此外,提到了一些实用技巧,如雅可比矩阵的计算、参数初始值的选择、数据预处理方法等,并引用了几篇重要文献作为参考。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对状态估计和参数辨识感兴趣的读者。 使用场景及目标:适用于需要精确估计电池参数的实际项目,如电动汽车、储能系统等领域。目标是提高电池管理系统的性能,确保电池的安全性和可靠性。 其他说明:文章强调了实际应用中的注意事项,如数据处理、参数选择和模型优化等方面的经验分享。同时提醒读者关注最新的研究成果和技术进展,以便更好地应用于实际工作中。

    基于三菱FX3U PLC和威纶通触摸屏的分切机上下收放卷张力控制系统设计

    内容概要:本文详细介绍了在无电子凸轮功能情况下,利用三菱FX3U系列PLC和威纶通触摸屏实现分切机上下收放卷张力控制的方法。主要内容涵盖硬件连接、程序框架设计、张力检测与读取、PID控制逻辑以及触摸屏交互界面的设计。文中通过具体代码示例展示了如何初始化寄存器、读取张力传感器数据、计算张力偏差并实施PID控制,最终实现稳定的张力控制。此外,还讨论了卷径计算、速度同步控制等关键技术点,并提供了现场调试经验和优化建议。 适合人群:从事自动化生产设备维护和技术支持的专业人士,尤其是熟悉PLC编程和触摸屏应用的技术人员。 使用场景及目标:适用于需要对分切机进行升级改造的企业,旨在提高分切机的张力控制精度,确保材料切割质量,降低生产成本。通过本方案可以实现±3%的张力控制精度,满足基本生产需求。 其他说明:本文不仅提供详细的程序代码和硬件配置指南,还分享了许多实用的调试技巧和经验,帮助技术人员更好地理解和应用相关技术。

    基于S7系列PLC与组态王的三泵变频恒压供水系统设计与实现

    内容概要:本文详细介绍了一种基于西门子S7-200和S7-300 PLC以及组态王软件的三泵变频恒压供水系统。主要内容涵盖IO分配、接线图原理图、梯形图程序编写和组态画面设计四个方面。通过合理的硬件配置和精确的编程逻辑,确保系统能够在不同负载情况下保持稳定的供水压力,同时实现节能和延长设备使用寿命的目标。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于需要稳定供水的各种场合,如住宅小区、工厂等。目标是通过优化控制系统,提升供水效率,减少能源消耗,并确保系统的可靠性和安全性。 其他说明:文中提供了详细的实例代码和调试技巧,帮助读者更好地理解和实施该项目。此外,还分享了一些实用的经验教训,有助于避免常见的错误和陷阱。

    三相三线制SVG/STATCOM的Simulink仿真建模与控制策略解析

    内容概要:本文详细介绍了三相三线制静止无功发生器(SVG/STATCOM)在Simulink中的仿真模型设计与实现。主要内容涵盖ip-iq检测法用于无功功率检测、dq坐标系下的电流解耦控制、电压电流双闭环控制系统的设计、SVPWM调制技术的应用以及具体的仿真参数设置。文中不仅提供了理论背景,还展示了具体的Matlab代码片段,帮助读者理解各个控制环节的工作原理和技术细节。此外,文章还讨论了实际调试中遇到的问题及解决方案,强调了参数调整的重要性。 适合人群:从事电力系统自动化、电力电子技术研究的专业人士,特别是对SVG/STATCOM仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解SVG/STATCOM工作原理并掌握其仿真方法的研究人员和工程师。目标是在实践中能够正确搭建和优化SVG/STATCOM的仿真模型,提高无功补偿的效果。 其他说明:文章提供了丰富的实例代码和调试技巧,有助于读者更好地理解和应用所学知识。同时,文中提及的一些经验和注意事项来源于实际项目,具有较高的参考价值。

    基于SIMULINK的风力机发电效率建模探究.pdf

    基于SIMULINK的风力机发电效率建模探究.pdf

    CarSim与Simulink联合仿真:基于MPC模型预测控制实现智能超车换道

    内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。

    基于MATLAB的信号与系统实验:常见信号生成、卷积积分、频域分析及Z变换详解

    内容概要:本文详细介绍了利用MATLAB进行信号与系统实验的具体步骤和技术要点。首先讲解了常见信号(如方波、sinc函数、正弦波等)的生成方法及其注意事项,强调了时间轴设置和参数调整的重要性。接着探讨了卷积积分的两种实现方式——符号运算和数值积分,指出了各自的特点和应用场景,并特别提醒了数值卷积时的时间轴重构和步长修正问题。随后深入浅出地解释了频域分析的方法,包括傅里叶变换的符号计算和快速傅里叶变换(FFT),并给出了具体的代码实例和常见错误提示。最后阐述了离散时间信号与系统的Z变换分析,展示了如何通过Z变换将差分方程转化为传递函数以及如何绘制零极点图来评估系统的稳定性。 适合人群:正在学习信号与系统课程的学生,尤其是需要完成相关实验任务的人群;对MATLAB有一定基础,希望通过实践加深对该领域理解的学习者。 使用场景及目标:帮助学生掌握MATLAB环境下信号生成、卷积积分、频域分析和Z变换的基本技能;提高学生解决实际问题的能力,避免常见的编程陷阱;培养学生的动手能力和科学思维习惯。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的小技巧,如如何正确保存实验结果图、如何撰写高质量的实验报告等。同时,作者以幽默风趣的语言风格贯穿全文,使得原本枯燥的技术内容变得生动有趣。

    【KUKA 机器人移动编程】:mo2_motion_ptp_en.ppt

    KUKA机器人相关文档

    永磁同步电机(PMSM)无传感器控制:I/F启动与滑模观测器结合的技术实现及应用

    内容概要:本文详细介绍了无传感器永磁同步电机(PMSM)控制技术,特别是针对低速和中高速的不同控制策略。低速阶段采用I/F控制,通过固定电流幅值和斜坡加速的方式启动电机,确保平稳启动。中高速阶段则引入滑模观测器进行反电动势估算,从而精确控制电机转速。文中还讨论了两者之间的平滑切换逻辑,强调了参数选择和调试技巧的重要性。此外,提供了具体的伪代码示例,帮助读者更好地理解和实现这一控制方案。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的应用场景,如家用电器、工业自动化设备等。主要目标是掌握无传感器PMSM控制的基本原理及其优化方法。 其他说明:文中提到的实际案例和测试数据有助于加深理解,同时提醒开发者注意硬件参数准确性以及调试过程中可能出现的问题。

    智能家居与物联网培训材料.ppt

    智能家居与物联网培训材料.ppt

    Matlab实现车辆路径规划:基于TSP、CVRP、CDVRP、VRPTW的四大算法解析及应用

    内容概要:本文详细介绍了使用Matlab解决车辆路径规划问题的四种经典算法:TSP(旅行商问题)、CVRP(带容量约束的车辆路径问题)、CDVRP(带容量和距离双重约束的车辆路径问题)和VRPTW(带时间窗约束的车辆路径问题)。针对每个问题,文中提供了具体的算法实现思路和关键代码片段,如遗传算法用于TSP的基础求解,贪心算法和遗传算法结合用于CVRP的路径分割,以及带有惩罚函数的时间窗约束处理方法。此外,还讨论了性能优化技巧,如矩阵运算替代循环、锦标赛选择、2-opt局部优化等。 适合人群:具有一定编程基础,尤其是对物流调度、路径规划感兴趣的开发者和技术爱好者。 使用场景及目标:适用于物流配送系统的路径优化,旨在提高配送效率,降低成本。具体应用场景包括但不限于外卖配送、快递运输等。目标是帮助读者掌握如何利用Matlab实现高效的路径规划算法,解决实际业务中的复杂约束条件。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实践经验,如参数设置、数据预处理、异常检测等。建议读者在实践中不断尝试不同的算法组合和优化策略,以应对更加复杂的实际问题。

    软考网络工程师2010-2014真题及答案

    软考网络工程师2010-2014真题及答案完整版 全国计算机软考 适合软考中级人群

    基于单片机的酒驾检测设计(51+1602+PCF8591+LED+BZ+KEY3)#0055

    包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示:测量酒精值、酒驾阈值、醉驾阈值; 3、采用PCF8591进行AD模数转换; 4、LED指示:正常绿灯、酒驾黄灯、醉驾红灯; 5、可通过按键修改酒驾醉驾阈值;

    基于MATLAB的拉格朗日函数与SQP二次规划方法实现约束最优化求解

    内容概要:本文详细介绍了利用MATLAB实现约束最优化求解的方法,主要分为两大部分:无约束优化和带约束优化。对于无约束优化,作者首先讲解了梯度下降法的基本原理和实现技巧,如步长搜索和Armijo条件的应用。接着深入探讨了带约束优化问题,特别是序列二次规划(SQP)方法的具体实现,包括拉格朗日函数的Hesse矩阵计算、QP子问题的构建以及拉格朗日乘子的更新策略。文中不仅提供了详细的MATLAB代码示例,还分享了许多调参经验和常见错误的解决办法。 适合人群:具备一定数学基础和编程经验的研究人员、工程师或学生,尤其是对最优化理论和应用感兴趣的读者。 使用场景及目标:适用于需要解决各类优化问题的实际工程项目,如机械臂能耗最小化、化工过程优化等。通过学习本文,读者能够掌握如何将复杂的约束优化问题分解为更易处理的二次规划子问题,从而提高求解效率和准确性。 其他说明:文章强调了优化算法选择的重要性,指出不同的问题结构决定了最适合的算法。此外,作者还分享了一些实用的经验教训,如Hesse矩阵的正定性处理和惩罚因子的动态调整,帮助读者少走弯路。

    【KUKA 机器人资料】:KUKA机器人剑指未来——访库卡自动化设备(上海)有限公司销售部经理邹涛.pdf

    KUKA机器人相关资料

    西门子200Smart与维纶触摸屏在疫苗车间自动化控制中的关键技术解析

    内容概要:本文详细介绍了某制造企业在疫苗车间控制系统中使用西门子200Smart PLC和维纶触摸屏的具体实现方法和技术要点。主要内容涵盖配液罐的模拟量处理、发酵罐的PID控制、USS通讯控制变频器、CIP清洗程序以及触摸屏权限管理等方面。文中不仅展示了具体的代码片段,还分享了许多调试经验和优化技巧,如模拟量处理中避免库指令占用额外存储空间、PID控制中的参数整定、USS通讯中的控制字配置等。 适用人群:从事工业自动化控制领域的工程师和技术人员,尤其是对中小型PLC和触摸屏编程感兴趣的从业者。 使用场景及目标:适用于疫苗车间及其他类似生物制药生产线的自动化控制系统设计和实施。目标是帮助读者掌握中小型PLC在复杂生产工艺中的应用技巧,提高系统的可靠性和效率。 其他说明:文章强调了模块化设计的重要性,提供了许多实用的操作建议和调试经验,有助于读者更好地理解和应用相关技术。此外,还提到了一些常见的错误及其解决方案,使读者能够避免类似的陷阱。

Global site tag (gtag.js) - Google Analytics