/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -XX:GCTimeRatio=19 -Xnoclassgc -XX:+DisableExplicitGC -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:-CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=70 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log
堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型JVM参数设置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m:设置持久代大小为16m。
-XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型JVM参数配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型JVM参数配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC
输出形式:
- [GC 118250K->113543K(130112K), 0.0094143 secs]
-
[Full GC 121376K->10414K(130112K), 0.0650971 secs]
- -XX:+PrintGCDetails
输出形式:
- [GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
-
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:打印GC前后的详细堆栈信息
输出形式:
- 34.702: [GC {Heap before gc invocations=7:
- def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
- eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
- from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
- to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
- tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
- the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
- compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
- the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
- ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
- rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
-
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
- def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
- eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
- from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
- to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
- tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
- the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
- compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
- the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
- ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
- rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
- }
- , 0.0757599 secs]
-Xloggc:filename:与上面几个配合使用,把相关日志信息记录到文件以便分析。
常见JVM参数配置汇总
堆设置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
收集器设置
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
四、调优总结
年轻代大小选择
响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
并发垃圾收集信息
持久代并发收集次数
传统GC信息
花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下JVM参数配置:
-XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
-XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
JVM的内存限制
相关推荐
3. **代码优化**:除了调整JVM参数外,还可以通过对程序代码本身的优化来提高程序性能,例如减少对象创建、避免内存泄漏等。 ### 实战案例分享 1. **案例背景**:假设在一个高并发场景下,某个Java应用出现了频繁...
- **性能调优**:JVM参数配置、监控工具使用。 #### 三、实战技巧篇 1. **类加载过程分析** - 了解类加载的三个阶段:加载、验证、准备。 - 探讨双亲委派模型的工作原理及其优缺点。 - 实现自定义类加载器的...
5. 性能调优:通过JVM参数设置,我们可以调整堆大小、新生代与老年代的比例、垃圾收集器类型等,以适应不同的应用需求。理解这些参数的含义和作用是提高系统性能的重要手段。 6. 深入JVM监控和诊断工具:如JConsole...
JVM参数调整是实战中的核心技巧。例如,通过-Xms和-Xmx设置堆内存大小,-XX:NewRatio控制新生代和老年代的比例,-XX:SurvivorRatio设置Eden和Survivor区的比例。还有-GC日志设置,如-Xloggc:file,用于分析和调优。 ...
此外,JVM参数调优是实战中的必备技能。通过设置-Xms、-Xmx控制堆内存大小,-XX:NewRatio调整新生代和老年代的比例,-XX:SurvivorRatio设置Eden和Survivor区的比例,以及其他众多参数,可以定制化JVM的行为,以适应...
性能优化是任何开发者都需要关注的话题,这里可能有分析JVM内存模型、调优参数设置、GC日志解读等方面的指导。还有可能涉及单元测试、持续集成、代码质量工具的使用,这些都是保证软件质量的重要环节。 最后,对于...
- **性能调优**:学习如何通过调整JVM设置、索引参数、硬件配置等方式优化Elasticsearch的性能表现。 - **水平扩展**:掌握如何通过增加节点实现Elasticsearch集群的水平扩展,确保系统的可伸缩性和高可用性。 ####...
它的设计目标是“一次编写,到处运行”,这得益于其跨平台的JVM(Java虚拟机)。本教程将深入探讨Java语言的基础和高级特性,帮助你从零开始掌握这一强大的工具。 **1. Java基础** Java的基础语法与C++类似,但更加...
它的设计理念是“一次编写,到处运行”,这意味着Java代码可以跨多个平台运行,只要这些平台支持Java虚拟机(JVM)。Java的特点包括垃圾回收机制、自动内存管理、强大的类库支持以及严格的类型检查,这使得它成为...
9. **泛型**:泛型引入了类型参数,提高了代码的类型安全性和重用性,降低了类型转换的错误风险。 10. **JDBC**:Java Database Connectivity允许Java程序连接到数据库,执行SQL语句,进行数据操作。 11. **框架**...