`
侯上校
  • 浏览: 229027 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Hadoop第一个测试实例WordCount的运行

 
阅读更多
首先确保hadoop已经正确安装、配置以及运行。

拷贝WordCount.java到我们的文件夹,下载的hadoop里带有WordCount.java,路径为:

hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java

进行拷贝操作

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~ 

[hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ ls 

[hadoop@localhost~]$ ls

Desktop  hadoop-0.20.203.0  WordCount.java

在当前目录下创建一个用来存放WordCount.class的文件夹

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ mkdir classes 

[hadoop@localhost~]$ mkdir classes

编译WordCount.java

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java 

[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java

上面的方法是按照hadoop自带的doc文档进行编译的,如果发现报错,出现如下异常

WordCount.java:53:error: cannot access Options

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

                                             ^

  class file for org.apache.commons.cli.Optionsnot found

1 error

则按如下进行编译

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java 

[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java

编译成功,classes下会出现一个org的文件夹

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ ls classes 

[hadoop@localhost~]$ ls classes

org

对编译好的class进行打包

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ . 

[hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ .

added manifest

adding: org/(in =0) (out= 0)(stored 0%)

adding:org/apache/(in = 0) (out= 0)(stored 0%)

adding:org/apache/hadoop/(in = 0) (out= 0)(stored 0%)

adding: org/apache/hadoop/examples/(in= 0) (out= 0)(stored 0%)

adding:org/apache/hadoop/examples/WordCount$TokenizerMapper.class(in = 1790) (out=765)(deflated 57%)

adding:org/apache/hadoop/examples/WordCount$IntSumReducer.class(in = 1793) (out=746)(deflated 58%)

adding:org/apache/hadoop/examples/WordCount.class(in = 1911) (out= 996)(deflated 47%)

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ ls 

[hadoop@localhost~]$ ls

classes  Desktop hadoop-0.20.203.0 wordcount.jar  WordCount.java

到此为止,java文件的编译工作已经完成

现在为测试工作准备需要的测试文件,创建2个文件file01、file02,内容如下

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ ls 

[hadoop@localhost~]$ ls

classes  Desktop file01  file02  hadoop-0.20.203.0  wordcount.jar WordCount.java

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ cat file01 

[hadoop@localhost~]$ cat file01

Hello World Bye World

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ cat file02 

[hadoop@localhost~]$ cat file02

Hello Hadoop Goodbye Hadoop

启动hadoop,在hadoop中创建input文件夹
[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls 
   2.  
   3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input 
   4.  
   5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls

Found 1 items

drwxr-xr-x   - hadoop supergroup          0 2011-11-23 05:20 /user/hadoop/input

把file01、file02上传input中
[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input 
   2.  
   3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input 
   4.  
   5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input

Found 2 items

-rw-r--r--   1 hadoop supergroup         22 2011-11-23 05:22/user/hadoop/input/file01

-rw-r--r--   1 hadoop supergroup         28 2011-11-23 05:22/user/hadoop/input/file02

运行及输出过程如下

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output

11/11/23 05:25:11INFO input.FileInputFormat: Total input paths to process : 2

11/11/23 05:25:12INFO mapred.JobClient: Running job: job_201111230519_0001

11/11/23 05:25:13INFO mapred.JobClient:  map 0% reduce 0%

11/11/23 05:25:45INFO mapred.JobClient:  map 50% reduce 0%

11/11/23 05:25:48INFO mapred.JobClient:  map 100% reduce0%

11/11/23 05:26:03INFO mapred.JobClient:  map 100% reduce 100%

11/11/23 05:26:07INFO mapred.JobClient: Job complete: job_201111230519_0001

11/11/23 05:26:07INFO mapred.JobClient: Counters: 25

11/11/23 05:26:07INFO mapred.JobClient:   Job Counters

11/11/23 05:26:07INFO mapred.JobClient:     Launchedreduce tasks=1

11/11/23 05:26:07INFO mapred.JobClient:    SLOTS_MILLIS_MAPS=48562

11/11/23 05:26:07INFO mapred.JobClient:     Total timespent by all reduces waiting after reserving slots (ms)=0

11/11/23 05:26:07INFO mapred.JobClient:     Total timespent by all maps waiting after reserving slots (ms)=0

11/11/23 05:26:07INFO mapred.JobClient:     Launched maptasks=2

11/11/23 05:26:07INFO mapred.JobClient:     Data-local maptasks=2

11/11/23 05:26:07INFO mapred.JobClient:    SLOTS_MILLIS_REDUCES=16678

11/11/23 05:26:07INFO mapred.JobClient:   File OutputFormat Counters

11/11/23 05:26:07INFO mapred.JobClient:     BytesWritten=41

11/11/23 05:26:07INFO mapred.JobClient:  FileSystemCounters

11/11/23 05:26:07INFO mapred.JobClient:    FILE_BYTES_READ=79

11/11/23 05:26:07INFO mapred.JobClient:    HDFS_BYTES_READ=272

11/11/23 05:26:07INFO mapred.JobClient:    FILE_BYTES_WRITTEN=63583

11/11/23 05:26:07INFO mapred.JobClient:    HDFS_BYTES_WRITTEN=41

11/11/23 05:26:07INFO mapred.JobClient:   File Input FormatCounters

11/11/23 05:26:07INFO mapred.JobClient:     Bytes Read=50

11/11/23 05:26:07INFO mapred.JobClient:   Map-ReduceFramework

11/11/23 05:26:07INFO mapred.JobClient:     Reduce inputgroups=5

11/11/23 05:26:07INFO mapred.JobClient:     Map outputmaterialized bytes=85

11/11/23 05:26:07INFO mapred.JobClient:     Combine outputrecords=6

11/11/23 05:26:07INFO mapred.JobClient:     Map inputrecords=2

11/11/23 05:26:07INFO mapred.JobClient:     Reduce shufflebytes=85

11/11/23 05:26:07INFO mapred.JobClient:     Reduce outputrecords=5

11/11/23 05:26:07INFO mapred.JobClient:     SpilledRecords=12

11/11/23 05:26:07INFO mapred.JobClient:     Map outputbytes=82

11/11/23 05:26:07INFO mapred.JobClient:     Combine inputrecords=8

11/11/23 05:26:07INFO mapred.JobClient:     Map outputrecords=8

11/11/23 05:26:07INFO mapred.JobClient:    SPLIT_RAW_BYTES=222

11/11/23 05:26:07INFO mapred.JobClient:     Reduce inputrecords=6

进行结果的查看

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls  

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls

Found 2 items

drwxr-xr-x   - hadoop supergroup          0 2011-11-23 05:22 /user/hadoop/input

drwxr-xr-x   - hadoop supergroup          0 2011-11-23 05:26/user/hadoop/output

发现在hadoop中多了一个output文件夹,查看output中的文件信息

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output

Found 3 items

-rw-r--r--   1 hadoop supergroup          0 2011-11-23 05:26/user/hadoop/output/_SUCCESS

drwxr-xr-x   - hadoop supergroup          0 2011-11-23 05:25/user/hadoop/output/_logs

-rw-r--r--   1 hadoop supergroup         41 2011-11-23 05:25/user/hadoop/output/part-r-00000

对WordCount的运行结果进行查看

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000

Bye     1

Goodbye 1

Hadoop  2

Hello   2

World   2

至此,hadoop下的WordCount实例运行结束,如果还想重新运行一遍,这需把hadoop下的output文件夹删除,因为hadoop为了保证结果的正确性,存在输出的文件夹的话,就会报异常,异常如下

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output

11/11/23 05:33:05INFO mapred.JobClient: Cleaning up the staging areahdfs://localhost:9000/tmp/hadoop-hadoop/mapred/staging/hadoop/.staging/job_201111230519_0002

Exception inthread "main" org.apache.hadoop.mapred.FileAlreadyExistsException:Output directory output already exists

        atorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:134)

        atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:830)

        atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:791)

        atjava.security.AccessController.doPrivileged(Native Method)

        at javax.security.auth.Subject.doAs(Subject.java:415)

        atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1059)

        atorg.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:791)

        atorg.apache.hadoop.mapreduce.Job.submit(Job.java:465)

        atorg.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:494)

        atorg.apache.hadoop.examples.WordCount.main(WordCount.java:67)

        atsun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

        atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

        atjava.lang.reflect.Method.invoke(Method.java:601)

        at org.apache.hadoop.util.RunJar.main(RunJar.java:156)

删除output文件夹的操作为

[plain] view plaincopyprint?

   1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output 

[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output

Deletedhdfs://localhost:9000/user/hadoop/output
分享到:
评论

相关推荐

    hadoop学习---运行第一个hadoop实例.docx

    本文介绍了如何在Hadoop环境中运行第一个实例——WordCount示例的具体步骤。通过这些步骤,不仅可以学会如何操作Hadoop,还能更好地理解Hadoop的工作机制。对于初学者而言,这是一个很好的实践机会,有助于加深对...

    hadoop eclips 的插件 和实例程序

    Hadoop是大数据处理领域的重要工具,它提供了一个分布式文件系统(HDFS)和MapReduce计算框架,使得在大规模数据集上进行并行处理成为可能。Eclipse是一款流行的Java集成开发环境(IDE),对于Hadoop开发者来说,...

    Hadoop平台搭建及实例运行.docx

    本文档详细介绍了在Ubuntu系统上搭建Hadoop平台的步骤,并通过一个简单的WordCount实例展示了其运行过程。 首先,搭建Hadoop平台需要满足一定的硬件环境,包括足够的内存、处理器和磁盘空间。在Ubuntu系统上,我们...

    新版Hadoop视频教程 段海涛老师Hadoop八天完全攻克Hadoop视频教程 Hadoop开发

    第一天 hadoop的基本概念 伪分布式hadoop集群安装 hdfs mapreduce 演示 01-hadoop职位需求状况.avi 02-hadoop课程安排.avi 03-hadoop应用场景.avi 04-hadoop对海量数据处理的解决思路.avi 05-hadoop版本选择和...

    hadoop段海涛老师八天实战视频

    第一天 hadoop的基本概念 伪分布式hadoop集群安装 hdfs mapreduce 演示 01-hadoop职位需求状况.avi 02-hadoop课程安排.avi 03-hadoop应用场景.avi 04-hadoop对海量数据处理的解决思路.avi 05-hadoop版本选择和...

    ( Hadoop Streaming编程实战(C++、PHP、Python).pdf )

    Mapper的职责是读取文本输入,并输出每行的第一个单词和数字1,表明这个单词出现了一次。 2. 接下来,实现WordCount的Reducer程序(reducer.cpp): ```cpp #include #include #include #include using ...

    第6章-Hadoop—分布式大数据系统78.pptx

    在配置完成后,可以通过运行测试程序如WordCount来验证Hadoop的正确安装和运行。 Hadoop的设计假设包括服务器的失效是常态、处理的数据量巨大、文件不常被修改等,这些假设使得Hadoop在大数据处理场景中表现出色,...

    大数据教程之搭建Hadoop集群.zip

    "细细品味Hadoop_Hadoop集群(第1期)_CentOS安装配置.pdf"涵盖CentOS的安装和配置;"细细品味Hadoop_Hadoop集群(第4期)_SecureCRT使用.pdf"可能讲解了如何使用SecureCRT管理远程服务器;"细细品味Hadoop_Hadoop...

    大数据Hadoop安装部署文档

    #### 第一部分:Hadoop在Windows上伪分布式的安装过程 **一、安装JDK** 1. **下载JDK** - 访问Oracle官网下载页面:...

    Hadoop权威指南第2版中文版

    - **定义与背景**:Hadoop是一个开源框架,用于分布式存储和处理大型数据集。它最初由Apache软件基金会开发,旨在解决大规模数据处理的问题。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和...

    hadoop学习笔记(二)

    在`generateDatas`方法中,作者用Java的`FileWriter`类生成模拟输入数据,这通常是MapReduce任务的第一步。通过创建文件并在循环中写入数据,作者模拟了一个数据集,这些数据随后将在MapReduce作业中被处理。 在...

    HadoopSpringMapReduce.zip

    文件列表中提到的"myfirstweb"可能是指项目中的第一个Web应用实例,这可能是SpringBoot初始化的示例,用于展示如何与Hadoop生态系统交互。 总的来说,这个项目提供了一个全面的实践教程,展示了如何在SpringBoot...

    大数据实验报告(实验一到八)

    实验一: 熟悉常用的Linux操作和Hadoop操作 实验二: 熟悉常用的HDFS操作 实验三: 熟悉常用的HBase操作 实验四: 熟悉常用的mongoDB数据库操作 实验五: MapReduce初级编程实践 实验六: 熟悉Hive的基本操作 实验七...

    spark 分布式集群搭建

    Local 模式是一种简单的本地运行模式,适用于开发测试环境。通过以下命令启动: ```bash ./bin/run-example org.apache.spark.examples.SparkPi local ``` 在 Local 模式下,LocalBackend 会响应 Scheduler 的请求,...

Global site tag (gtag.js) - Google Analytics