- 浏览: 229027 次
- 性别:
- 来自: 上海
-
文章分类
最新评论
-
chowqh:
#修改指向我的hadoop安装目录 org.apache.s ...
Sqoop 1.99.3 安装 -
chowqh:
#修改指向我的hadoop安装目录 org.apache.s ...
Sqoop 1.99.3 安装 -
wuzhongfei:
sqoop1.99.3以后是不是全部取消了sqoop命令,例如 ...
Sqoop 1.99.3 安装 -
cyj0421129:
sqoop:000> show version -all ...
Sqoop 1.99.3 安装 -
mypeterhero:
请问,我的服务端也起来了如下:sqoop.sh server ...
Sqoop 1.99.3 安装
首先确保hadoop已经正确安装、配置以及运行。
拷贝WordCount.java到我们的文件夹,下载的hadoop里带有WordCount.java,路径为:
hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java
进行拷贝操作
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~
[hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
Desktop hadoop-0.20.203.0 WordCount.java
在当前目录下创建一个用来存放WordCount.class的文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ mkdir classes
[hadoop@localhost~]$ mkdir classes
编译WordCount.java
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java
[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java
上面的方法是按照hadoop自带的doc文档进行编译的,如果发现报错,出现如下异常
WordCount.java:53:error: cannot access Options
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
^
class file for org.apache.commons.cli.Optionsnot found
1 error
则按如下进行编译
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java
[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java
编译成功,classes下会出现一个org的文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls classes
[hadoop@localhost~]$ ls classes
org
对编译好的class进行打包
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ .
[hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ .
added manifest
adding: org/(in =0) (out= 0)(stored 0%)
adding:org/apache/(in = 0) (out= 0)(stored 0%)
adding:org/apache/hadoop/(in = 0) (out= 0)(stored 0%)
adding: org/apache/hadoop/examples/(in= 0) (out= 0)(stored 0%)
adding:org/apache/hadoop/examples/WordCount$TokenizerMapper.class(in = 1790) (out=765)(deflated 57%)
adding:org/apache/hadoop/examples/WordCount$IntSumReducer.class(in = 1793) (out=746)(deflated 58%)
adding:org/apache/hadoop/examples/WordCount.class(in = 1911) (out= 996)(deflated 47%)
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
classes Desktop hadoop-0.20.203.0 wordcount.jar WordCount.java
到此为止,java文件的编译工作已经完成
现在为测试工作准备需要的测试文件,创建2个文件file01、file02,内容如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
classes Desktop file01 file02 hadoop-0.20.203.0 wordcount.jar WordCount.java
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cat file01
[hadoop@localhost~]$ cat file01
Hello World Bye World
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cat file02
[hadoop@localhost~]$ cat file02
Hello Hadoop Goodbye Hadoop
启动hadoop,在hadoop中创建input文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
2.
3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input
4.
5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:20 /user/hadoop/input
把file01、file02上传input中
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input
2.
3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input
4.
5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input
Found 2 items
-rw-r--r-- 1 hadoop supergroup 22 2011-11-23 05:22/user/hadoop/input/file01
-rw-r--r-- 1 hadoop supergroup 28 2011-11-23 05:22/user/hadoop/input/file02
运行及输出过程如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
11/11/23 05:25:11INFO input.FileInputFormat: Total input paths to process : 2
11/11/23 05:25:12INFO mapred.JobClient: Running job: job_201111230519_0001
11/11/23 05:25:13INFO mapred.JobClient: map 0% reduce 0%
11/11/23 05:25:45INFO mapred.JobClient: map 50% reduce 0%
11/11/23 05:25:48INFO mapred.JobClient: map 100% reduce0%
11/11/23 05:26:03INFO mapred.JobClient: map 100% reduce 100%
11/11/23 05:26:07INFO mapred.JobClient: Job complete: job_201111230519_0001
11/11/23 05:26:07INFO mapred.JobClient: Counters: 25
11/11/23 05:26:07INFO mapred.JobClient: Job Counters
11/11/23 05:26:07INFO mapred.JobClient: Launchedreduce tasks=1
11/11/23 05:26:07INFO mapred.JobClient: SLOTS_MILLIS_MAPS=48562
11/11/23 05:26:07INFO mapred.JobClient: Total timespent by all reduces waiting after reserving slots (ms)=0
11/11/23 05:26:07INFO mapred.JobClient: Total timespent by all maps waiting after reserving slots (ms)=0
11/11/23 05:26:07INFO mapred.JobClient: Launched maptasks=2
11/11/23 05:26:07INFO mapred.JobClient: Data-local maptasks=2
11/11/23 05:26:07INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=16678
11/11/23 05:26:07INFO mapred.JobClient: File OutputFormat Counters
11/11/23 05:26:07INFO mapred.JobClient: BytesWritten=41
11/11/23 05:26:07INFO mapred.JobClient: FileSystemCounters
11/11/23 05:26:07INFO mapred.JobClient: FILE_BYTES_READ=79
11/11/23 05:26:07INFO mapred.JobClient: HDFS_BYTES_READ=272
11/11/23 05:26:07INFO mapred.JobClient: FILE_BYTES_WRITTEN=63583
11/11/23 05:26:07INFO mapred.JobClient: HDFS_BYTES_WRITTEN=41
11/11/23 05:26:07INFO mapred.JobClient: File Input FormatCounters
11/11/23 05:26:07INFO mapred.JobClient: Bytes Read=50
11/11/23 05:26:07INFO mapred.JobClient: Map-ReduceFramework
11/11/23 05:26:07INFO mapred.JobClient: Reduce inputgroups=5
11/11/23 05:26:07INFO mapred.JobClient: Map outputmaterialized bytes=85
11/11/23 05:26:07INFO mapred.JobClient: Combine outputrecords=6
11/11/23 05:26:07INFO mapred.JobClient: Map inputrecords=2
11/11/23 05:26:07INFO mapred.JobClient: Reduce shufflebytes=85
11/11/23 05:26:07INFO mapred.JobClient: Reduce outputrecords=5
11/11/23 05:26:07INFO mapred.JobClient: SpilledRecords=12
11/11/23 05:26:07INFO mapred.JobClient: Map outputbytes=82
11/11/23 05:26:07INFO mapred.JobClient: Combine inputrecords=8
11/11/23 05:26:07INFO mapred.JobClient: Map outputrecords=8
11/11/23 05:26:07INFO mapred.JobClient: SPLIT_RAW_BYTES=222
11/11/23 05:26:07INFO mapred.JobClient: Reduce inputrecords=6
进行结果的查看
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:22 /user/hadoop/input
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:26/user/hadoop/output
发现在hadoop中多了一个output文件夹,查看output中的文件信息
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output
Found 3 items
-rw-r--r-- 1 hadoop supergroup 0 2011-11-23 05:26/user/hadoop/output/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:25/user/hadoop/output/_logs
-rw-r--r-- 1 hadoop supergroup 41 2011-11-23 05:25/user/hadoop/output/part-r-00000
对WordCount的运行结果进行查看
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
至此,hadoop下的WordCount实例运行结束,如果还想重新运行一遍,这需把hadoop下的output文件夹删除,因为hadoop为了保证结果的正确性,存在输出的文件夹的话,就会报异常,异常如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
11/11/23 05:33:05INFO mapred.JobClient: Cleaning up the staging areahdfs://localhost:9000/tmp/hadoop-hadoop/mapred/staging/hadoop/.staging/job_201111230519_0002
Exception inthread "main" org.apache.hadoop.mapred.FileAlreadyExistsException:Output directory output already exists
atorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:134)
atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:830)
atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:791)
atjava.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1059)
atorg.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:791)
atorg.apache.hadoop.mapreduce.Job.submit(Job.java:465)
atorg.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:494)
atorg.apache.hadoop.examples.WordCount.main(WordCount.java:67)
atsun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
atjava.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.util.RunJar.main(RunJar.java:156)
删除output文件夹的操作为
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output
Deletedhdfs://localhost:9000/user/hadoop/output
拷贝WordCount.java到我们的文件夹,下载的hadoop里带有WordCount.java,路径为:
hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java
进行拷贝操作
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~
[hadoop@localhost~]$ cp hadoop-0.20.203.0/src/examples/org/apache/hadoop/examples/WordCount.java ~
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
Desktop hadoop-0.20.203.0 WordCount.java
在当前目录下创建一个用来存放WordCount.class的文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ mkdir classes
[hadoop@localhost~]$ mkdir classes
编译WordCount.java
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java
[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar -d classesWordCount.java
上面的方法是按照hadoop自带的doc文档进行编译的,如果发现报错,出现如下异常
WordCount.java:53:error: cannot access Options
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
^
class file for org.apache.commons.cli.Optionsnot found
1 error
则按如下进行编译
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java
[hadoop@localhost~]$ javac -classpath hadoop-0.20.203.0/hadoop-core-0.20.203.0.jar:hadoop-0.20.203.0/lib/commons-cli-1.2.jar -d classes WordCount.java
编译成功,classes下会出现一个org的文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls classes
[hadoop@localhost~]$ ls classes
org
对编译好的class进行打包
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ .
[hadoop@localhost~]$ jar -cvf wordcount.jar -C classes/ .
added manifest
adding: org/(in =0) (out= 0)(stored 0%)
adding:org/apache/(in = 0) (out= 0)(stored 0%)
adding:org/apache/hadoop/(in = 0) (out= 0)(stored 0%)
adding: org/apache/hadoop/examples/(in= 0) (out= 0)(stored 0%)
adding:org/apache/hadoop/examples/WordCount$TokenizerMapper.class(in = 1790) (out=765)(deflated 57%)
adding:org/apache/hadoop/examples/WordCount$IntSumReducer.class(in = 1793) (out=746)(deflated 58%)
adding:org/apache/hadoop/examples/WordCount.class(in = 1911) (out= 996)(deflated 47%)
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
classes Desktop hadoop-0.20.203.0 wordcount.jar WordCount.java
到此为止,java文件的编译工作已经完成
现在为测试工作准备需要的测试文件,创建2个文件file01、file02,内容如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ ls
[hadoop@localhost~]$ ls
classes Desktop file01 file02 hadoop-0.20.203.0 wordcount.jar WordCount.java
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cat file01
[hadoop@localhost~]$ cat file01
Hello World Bye World
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ cat file02
[hadoop@localhost~]$ cat file02
Hello Hadoop Goodbye Hadoop
启动hadoop,在hadoop中创建input文件夹
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
2.
3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input
4.
5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -mkdir input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -ls
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:20 /user/hadoop/input
把file01、file02上传input中
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input
2.
3. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input
4.
5. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file01 input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -put file02 input
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls input
Found 2 items
-rw-r--r-- 1 hadoop supergroup 22 2011-11-23 05:22/user/hadoop/input/file01
-rw-r--r-- 1 hadoop supergroup 28 2011-11-23 05:22/user/hadoop/input/file02
运行及输出过程如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
11/11/23 05:25:11INFO input.FileInputFormat: Total input paths to process : 2
11/11/23 05:25:12INFO mapred.JobClient: Running job: job_201111230519_0001
11/11/23 05:25:13INFO mapred.JobClient: map 0% reduce 0%
11/11/23 05:25:45INFO mapred.JobClient: map 50% reduce 0%
11/11/23 05:25:48INFO mapred.JobClient: map 100% reduce0%
11/11/23 05:26:03INFO mapred.JobClient: map 100% reduce 100%
11/11/23 05:26:07INFO mapred.JobClient: Job complete: job_201111230519_0001
11/11/23 05:26:07INFO mapred.JobClient: Counters: 25
11/11/23 05:26:07INFO mapred.JobClient: Job Counters
11/11/23 05:26:07INFO mapred.JobClient: Launchedreduce tasks=1
11/11/23 05:26:07INFO mapred.JobClient: SLOTS_MILLIS_MAPS=48562
11/11/23 05:26:07INFO mapred.JobClient: Total timespent by all reduces waiting after reserving slots (ms)=0
11/11/23 05:26:07INFO mapred.JobClient: Total timespent by all maps waiting after reserving slots (ms)=0
11/11/23 05:26:07INFO mapred.JobClient: Launched maptasks=2
11/11/23 05:26:07INFO mapred.JobClient: Data-local maptasks=2
11/11/23 05:26:07INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=16678
11/11/23 05:26:07INFO mapred.JobClient: File OutputFormat Counters
11/11/23 05:26:07INFO mapred.JobClient: BytesWritten=41
11/11/23 05:26:07INFO mapred.JobClient: FileSystemCounters
11/11/23 05:26:07INFO mapred.JobClient: FILE_BYTES_READ=79
11/11/23 05:26:07INFO mapred.JobClient: HDFS_BYTES_READ=272
11/11/23 05:26:07INFO mapred.JobClient: FILE_BYTES_WRITTEN=63583
11/11/23 05:26:07INFO mapred.JobClient: HDFS_BYTES_WRITTEN=41
11/11/23 05:26:07INFO mapred.JobClient: File Input FormatCounters
11/11/23 05:26:07INFO mapred.JobClient: Bytes Read=50
11/11/23 05:26:07INFO mapred.JobClient: Map-ReduceFramework
11/11/23 05:26:07INFO mapred.JobClient: Reduce inputgroups=5
11/11/23 05:26:07INFO mapred.JobClient: Map outputmaterialized bytes=85
11/11/23 05:26:07INFO mapred.JobClient: Combine outputrecords=6
11/11/23 05:26:07INFO mapred.JobClient: Map inputrecords=2
11/11/23 05:26:07INFO mapred.JobClient: Reduce shufflebytes=85
11/11/23 05:26:07INFO mapred.JobClient: Reduce outputrecords=5
11/11/23 05:26:07INFO mapred.JobClient: SpilledRecords=12
11/11/23 05:26:07INFO mapred.JobClient: Map outputbytes=82
11/11/23 05:26:07INFO mapred.JobClient: Combine inputrecords=8
11/11/23 05:26:07INFO mapred.JobClient: Map outputrecords=8
11/11/23 05:26:07INFO mapred.JobClient: SPLIT_RAW_BYTES=222
11/11/23 05:26:07INFO mapred.JobClient: Reduce inputrecords=6
进行结果的查看
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:22 /user/hadoop/input
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:26/user/hadoop/output
发现在hadoop中多了一个output文件夹,查看output中的文件信息
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -ls output
Found 3 items
-rw-r--r-- 1 hadoop supergroup 0 2011-11-23 05:26/user/hadoop/output/_SUCCESS
drwxr-xr-x - hadoop supergroup 0 2011-11-23 05:25/user/hadoop/output/_logs
-rw-r--r-- 1 hadoop supergroup 41 2011-11-23 05:25/user/hadoop/output/part-r-00000
对WordCount的运行结果进行查看
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop fs -cat output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
至此,hadoop下的WordCount实例运行结束,如果还想重新运行一遍,这需把hadoop下的output文件夹删除,因为hadoop为了保证结果的正确性,存在输出的文件夹的话,就会报异常,异常如下
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop jar wordcount.jar org.apache.hadoop.examples.WordCount input output
11/11/23 05:33:05INFO mapred.JobClient: Cleaning up the staging areahdfs://localhost:9000/tmp/hadoop-hadoop/mapred/staging/hadoop/.staging/job_201111230519_0002
Exception inthread "main" org.apache.hadoop.mapred.FileAlreadyExistsException:Output directory output already exists
atorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:134)
atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:830)
atorg.apache.hadoop.mapred.JobClient$2.run(JobClient.java:791)
atjava.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
atorg.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1059)
atorg.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:791)
atorg.apache.hadoop.mapreduce.Job.submit(Job.java:465)
atorg.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:494)
atorg.apache.hadoop.examples.WordCount.main(WordCount.java:67)
atsun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
atsun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
atjava.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.util.RunJar.main(RunJar.java:156)
删除output文件夹的操作为
[plain] view plaincopyprint?
1. [hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output
[hadoop@localhost~]$ hadoop-0.20.203.0/bin/hadoop dfs -rmr output
Deletedhdfs://localhost:9000/user/hadoop/output
发表评论
-
Uber模式测试
2015-07-09 16:15 703... -
Hadooop序列化框架使用
2015-07-03 11:03 778第一步:实现Writable接口(TestGenericWr ... -
hadoop 一些知识
2014-10-14 11:39 0Hadoop MapReduceV2(Yarn) 框架简介 ... -
hadoop记录
2014-07-17 09:14 621MapReduce的特征 1. 每个 ... -
Performance Tunning
2014-07-16 16:24 423「转自」http://langyu.iteye.com/bl ... -
hadoop2之YARN
2014-06-17 16:43 388YARN资源管理系统 产生背景: 1.源于MRV1的几 ... -
hadoop自带SORT
2014-06-09 17:41 0创建文件输入一下内容soso.txt: 60 51 60 ... -
合并文件内容MR
2014-06-09 16:25 0file01.txt 20081401,math,90,2 ... -
本地文件合并到HDFS
2014-06-09 15:42 0准备文件: import java.io.IOExce ... -
编写求平均之MR
2014-06-09 14:58 01.下载数据流http://data.nber.org/pa ... -
MR统计专利
2014-06-09 11:00 0下载专利文件:http://data.nber.org/pa ... -
hadoop MR统计最高气温
2014-06-06 17:52 0目前有3.5GB的文件 hadoop@hadoopMas ... -
hadoop word count
2014-06-05 17:35 0package wordCountTest; impo ... -
MapReduce计算后插入到HBase数据哭中
2014-06-05 17:06 0package com.hn.hbase; impor ... -
完全分布式下使用eclipse运行hadoop2.2.0的WordCount实例
2014-06-03 14:12 803... -
Hadoop 2.2.0编译hadoop-eclipse-plugin插件
2014-06-03 13:31 210下载:hadoop@hadoopSlave2:/opt/hn/ ... -
环境配置
2014-05-30 08:31 0ubuntu 12.04 64位系统上编译hadoop-2 ... -
ubuntu 12.04 64位搭建hadoop-2.2.0分布式环境
2014-06-04 13:33 43准备三台机器, 配置分别是: +============ ... -
ubuntu 12.04 64位系统下hadoop-2.2.0-src源码编译
2014-05-20 15:39 1481第零:配置yum源 yum install g ... -
hadop一些地址
2014-05-15 16:09 696hadoop在路上 http://www.kanka ...
相关推荐
本文介绍了如何在Hadoop环境中运行第一个实例——WordCount示例的具体步骤。通过这些步骤,不仅可以学会如何操作Hadoop,还能更好地理解Hadoop的工作机制。对于初学者而言,这是一个很好的实践机会,有助于加深对...
Hadoop是大数据处理领域的重要工具,它提供了一个分布式文件系统(HDFS)和MapReduce计算框架,使得在大规模数据集上进行并行处理成为可能。Eclipse是一款流行的Java集成开发环境(IDE),对于Hadoop开发者来说,...
本文档详细介绍了在Ubuntu系统上搭建Hadoop平台的步骤,并通过一个简单的WordCount实例展示了其运行过程。 首先,搭建Hadoop平台需要满足一定的硬件环境,包括足够的内存、处理器和磁盘空间。在Ubuntu系统上,我们...
第一天 hadoop的基本概念 伪分布式hadoop集群安装 hdfs mapreduce 演示 01-hadoop职位需求状况.avi 02-hadoop课程安排.avi 03-hadoop应用场景.avi 04-hadoop对海量数据处理的解决思路.avi 05-hadoop版本选择和...
第一天 hadoop的基本概念 伪分布式hadoop集群安装 hdfs mapreduce 演示 01-hadoop职位需求状况.avi 02-hadoop课程安排.avi 03-hadoop应用场景.avi 04-hadoop对海量数据处理的解决思路.avi 05-hadoop版本选择和...
Mapper的职责是读取文本输入,并输出每行的第一个单词和数字1,表明这个单词出现了一次。 2. 接下来,实现WordCount的Reducer程序(reducer.cpp): ```cpp #include #include #include #include using ...
在配置完成后,可以通过运行测试程序如WordCount来验证Hadoop的正确安装和运行。 Hadoop的设计假设包括服务器的失效是常态、处理的数据量巨大、文件不常被修改等,这些假设使得Hadoop在大数据处理场景中表现出色,...
"细细品味Hadoop_Hadoop集群(第1期)_CentOS安装配置.pdf"涵盖CentOS的安装和配置;"细细品味Hadoop_Hadoop集群(第4期)_SecureCRT使用.pdf"可能讲解了如何使用SecureCRT管理远程服务器;"细细品味Hadoop_Hadoop...
#### 第一部分:Hadoop在Windows上伪分布式的安装过程 **一、安装JDK** 1. **下载JDK** - 访问Oracle官网下载页面:...
- **定义与背景**:Hadoop是一个开源框架,用于分布式存储和处理大型数据集。它最初由Apache软件基金会开发,旨在解决大规模数据处理的问题。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和...
在`generateDatas`方法中,作者用Java的`FileWriter`类生成模拟输入数据,这通常是MapReduce任务的第一步。通过创建文件并在循环中写入数据,作者模拟了一个数据集,这些数据随后将在MapReduce作业中被处理。 在...
文件列表中提到的"myfirstweb"可能是指项目中的第一个Web应用实例,这可能是SpringBoot初始化的示例,用于展示如何与Hadoop生态系统交互。 总的来说,这个项目提供了一个全面的实践教程,展示了如何在SpringBoot...
实验一: 熟悉常用的Linux操作和Hadoop操作 实验二: 熟悉常用的HDFS操作 实验三: 熟悉常用的HBase操作 实验四: 熟悉常用的mongoDB数据库操作 实验五: MapReduce初级编程实践 实验六: 熟悉Hive的基本操作 实验七...
Local 模式是一种简单的本地运行模式,适用于开发测试环境。通过以下命令启动: ```bash ./bin/run-example org.apache.spark.examples.SparkPi local ``` 在 Local 模式下,LocalBackend 会响应 Scheduler 的请求,...