- 浏览: 178791 次
- 性别:
- 来自: 北京
-
文章分类
最新评论
-
chenyi1125:
StateStats 是自己定义的类吧,有哪些属性,如何与我 ...
mongodb sum 操作 -
yongquan812:
...
最全的 Twitter Bootstrap 开发资源清单 -
mccxj:
不是已经提供个params的属性来添加路径的参数了么?我对分页 ...
grails 查询结果分页 简单实现 -
sphinxdwood:
请问第22行有什么用?params.ft_inlist = K ...
grails 查询结果分页 简单实现 -
walsh:
classpath的配置不正确吧
java基础
- <?xml version="1.0" encoding="UTF-8"?>
- <!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
- <log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/' >
- <appender name="myConsole" class="org.apache.log4j.ConsoleAppender">
- <layout class="org.apache.log4j.PatternLayout">
- <param name="ConversionPattern"
- value="[%d{dd HH:mm:ss,SSS\} %-5p] [%t] %c{2\} - %m%n" />
- </layout>
- <!--过滤器设置输出的级别-->
- <filter class="org.apache.log4j.varia.LevelRangeFilter">
- <param name="levelMin" value="debug" />
- <param name="levelMax" value="warn" />
- <param name="AcceptOnMatch" value="true" />
- </filter>
- </appender>
- <appender name="myFile" class="org.apache.log4j.RollingFileAppender">
- <param name="File" value="D:/output.log" /><!-- 设置日志输出文件名 -->
- <!-- 设置是否在重新启动服务时,在原有日志的基础添加新日志 -->
- <param name="Append" value="true" />
- <param name="MaxBackupIndex" value="10" />
- <layout class="org.apache.log4j.PatternLayout">
- <param name="ConversionPattern" value="%p (%c:%L)- %m%n" />
- </layout>
- </appender>
- <appender name="activexAppender" class="org.apache.log4j.DailyRollingFileAppender">
- <param name="File" value="E:/activex.log" />
- <param name="DatePattern" value="'.'yyyy-MM-dd'.log'" />
- <layout class="org.apache.log4j.PatternLayout">
- <param name="ConversionPattern"
- value="[%d{MMdd HH:mm:ss SSS\} %-5p] [%t] %c{3\} - %m%n" />
- </layout>
- </appender>
- <!-- 指定logger的设置,additivity指示是否遵循缺省的继承机制-->
- <logger name="com.runway.bssp.activeXdemo" additivity="false">
- <priority value ="info"/>
- <appender-ref ref="activexAppender" />
- </logger>
- <!-- 根logger的设置-->
- <root>
- <priority value ="debug"/>
- <appender-ref ref="myConsole"/>
- <appender-ref ref="myFile"/>
- </root>
- </log4j:configuration>
(1). 输出方式appender一般有5种:
[plain] view plaincopy
- org.apache.log4j.RollingFileAppender(滚动文件,自动记录最新日志)
- org.apache.log4j.ConsoleAppender (控制台)
- org.apache.log4j.FileAppender (文件)
- org.apache.log4j.DailyRollingFileAppender (每天产生一个日志文件)
- org.apache.log4j.WriterAppender (将日志信息以流格式发送到任意指定的地方)
(2). 日记记录的优先级priority,优先级由高到低分为
[plain] view plaincopy
- <span style="white-space:pre"> </span> OFF ,FATAL ,ERROR ,WARN ,INFO ,DEBUG ,ALL。
- <span style="white-space:pre"> </span> Log4j建议只使用FATAL ,ERROR ,WARN ,INFO ,DEBUG这五个级别。
(3). 格式说明layout中的参数都以%开始,后面不同的参数代表不同的格式化信息(参数按字母表顺序列出):
[plain] view plaincopy
- %c 输出所属类的全名,可在修改为 %d{Num} ,Num类名输出的维(如:"org.apache.elathen.ClassName",%C{2}将输出elathen.ClassName)
- %d 输出日志时间其格式为 %d{yyyy-MM-dd HH:mm:ss,SSS},可指定格式 如 %d{HH:mm:ss}
- %l 输出日志事件发生位置,包括类目名、发生线程,在代码中的行数
- %n 换行符
- %m 输出代码指定信息,如info(“message”),输出message
- %p 输出优先级,即 FATAL ,ERROR 等
- %r 输出从启动到显示该log信息所耗费的毫秒数
- %t 输出产生该日志事件的线程名
xml配置文件详解:
[plain] view plaincopy
- <?xml version="1.0" encoding="UTF-8" ?>
- <!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
- log4j:configuration (root element)
- xmlns:log4j [#FIXED attribute] : 定义log4j的名字空间,取定值"http://jakarta.apache.org/log4j/"
- appender [* child] : 一个appender子元素定义一个日志输出目的地
- name [#REQUIRED attribute] : 定义appender的名字,以便被后文引用
- class [#REQUIRED attribute] : 定义appender对象所属的类的全名
- param [* child] : 创建appender对象时传递给类构造方法的参数
- layout [? child] : layout元素定义与某一个appender相联系的日志格式化器。
- class [#REQUIRED attribute] : 定义layout对象所属的类的全名
- param [* child] : 创建layout对象时传递给类构造方法的参数
- logger [* child] : 一个logger子元素定义一个日志写出器
- name [#REQUIRED attribute] : 定义logger的名字,以便被后文引用
- additivity [#ENUM attribute] : 取值为"true"(默认)或者"false",是否继承父logger的属性
- level [? child] : 定义该logger的日志级别
- appender-ref [* child] : 定义该logger的输出目的地
- root [? child] : root子元素定义了root logger
- param [* child] : 创建root logger对象时传递给类构造方法的参数
- level [? child] : 定义root logger的日志级别
- class [#IMPLIED attribute] : 定义level对象所属的类,默认情况下是"org.apache.log4j.Level类
- value [#REQUIRED attribute] : 为level对象赋值。可能的取值从小到大依次为"all"、"debug"、"info"、"warn"、"error"、"fatal"和"off"。当值为"off" 时表示没有任何日志信息被输出
- param [* child] : 创建level对象时传递给类构造方法的参数
- appender-ref [* child] :元素引用一个appender元素的名字,为logger对象增加一个appender。
param元素没有子元素
在xml文件中配置appender和layout
创建不同的Appender对象或者不同的Layout对象要调用不同的构造方法。可以使用param子元素来设定不同的参数值。
创建ConsoleAppender对象
ConsoleAppender的构造方法不接受其它的参数。
[plain] view plaincopy
- <appender name="console.log" class="org.apache.log4j.ConsoleAppender">
- <layout ... >
- ... ...
- </layout>
- </appender>
创建FileAppender对象
可以为FileAppender类的构造方法传递两个参数:File表示日志文件名;Append表示如文件已存在,是否把日志追加到文件尾部,可能取值为"true"和"false"(默认)。
[plain] view plaincopy
- <appender name="file.log" class="org.apache.log4j.FileAppender">
- <param name="File" value="/tmp/log.txt" />
- <param name="Append" value="false" />
- <layout ... >
- ... ...
- </layout>
- </appender>
创建RollingFileAppender对象
除了File和Append以外,还可以为RollingFileAppender类的构造方法传递两个参数:MaxBackupIndex备份日志文件的个数(默认是1个);MaxFileSize表示日志文件允许的最大字节数(默认是10M)。
[plain] view plaincopy
- <appender name="rollingFile.log" class="org.apache.log4j.RollingFileAppender">
- <param name="File" value="/tmp/rollingLog.txt" />
- <param name="Append" value="false" />
- <param name="MaxBackupIndex" value="2" />
- <param name="MaxFileSize" value="1024" />
- <layout ... >
- ... ...
- </layout>
- </appender>
创建PatternLayout对象
可以为PatternLayout类的构造方法传递参数ConversionPattern。
[plain] view plaincopy
- <layout class="org.apache.log4j.PatternLayout>
- <param name="Conversion" value="%d [%t] %p - %m%n" />
- </layout>
发表评论
-
mybatis 一些总结
2014-04-09 13:06 1357最近用mybatis开发,一些总结: 结合spring ... -
STOMP protocol
2013-12-18 00:41 1169STOMP,Streaming Text Ori ... -
java 反射机制更改私有属性 重复创建单例类对象
2012-11-04 00:16 2320单例类: package com.shenli. ... -
log4j.xml web.xml配置
2012-10-29 23:53 9935log4j.xml配置实现配置实现配置实现配置实现 先写 ... -
Maven 2 plugin fails with cannot find symbol exception when defining two locatio
2012-10-17 23:58 1245https://confluence.atlassian.co ... -
maven 1.5 编译级别
2012-09-25 10:36 876在pom.mxl中增加以下内容 <b ... -
eclipse debug 问题解决
2012-05-18 15:15 0eclipse 问题解决 问题描述:3.7.2里面安装了mav ... -
eclipse plugin update
2012-05-18 14:52 886eclipse plugin update site 总结 ... -
JVM 学习 (2)实战 OutOfMemoryError异常
2012-03-13 17:37 0首先来制造Java堆溢出: import jav ... -
JVM 学习(1)运行时数据区
2012-03-13 11:40 856今天开始学习JVM 先看看运行时数据区的结构: ... -
Ubuntu 上使用 Rxtx
2009-09-04 17:45 0ubuntu下安装和配置RXTX实现串口通讯 RXTX是一套 ... -
自己写的线程池
2009-06-05 15:54 14381 .线程池类:TPTaskProxy import ... -
Ant 获取svn工程并编译
2008-08-05 12:49 3336<?xml version="1.0" ... -
Acegi配置文档
2008-08-05 12:40 1104Acegi是基于Spring的一个 ... -
java基础
2008-06-05 13:33 2397Java基础 从事java相关的编程工 ... -
JBoss Rules 2
2008-06-05 11:40 1272JBoss Rules 学习(二): RETE算法 在JBo ... -
JBoss Rules 1
2008-06-05 11:33 1664JBoss Rules 学习(一): 什么是Rule ... -
junit4参数化测试和easymock的使用
2008-06-05 11:20 3356利用junit4的一些新特性,我们可以方便的对多个参数进行测试 ... -
html编码转换工具
2008-06-04 13:07 3096对于html的特殊标记的处理,有一个好办法,可以轻松的实现ht ...
相关推荐
【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】
无
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
人形机器人产业的发展需要人工智能、高端制造、新材料等先进技术的协同创新和突破。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
开关电源的尖峰干扰及其抑制.zip
房地产培训 -新进业务员压马路市调培训.ppt
内容概要:本文探讨了基于MATLAB平台的虚拟电厂优化调度方法,特别关注电转气(P2G)协同、碳捕集技术和垃圾焚烧的应用。文中介绍了虚拟电厂的概念及其重要性,详细解释了碳捕集、需求响应和电转气协同调度的关键技术,并展示了如何使用MATLAB和CPLEX求解器进行优化调度的具体步骤。通过定义决策变量、构建目标函数和设定约束条件,最终实现了多目标优化,即经济性最优和碳排放最低。此外,还讨论了一些常见的代码实现技巧和潜在的问题解决方案。 适合人群:从事能源管理和优化调度研究的专业人士,尤其是那些熟悉MATLAB编程和优化算法的人士。 使用场景及目标:适用于希望深入了解虚拟电厂运作机制和技术实现的研究人员和工程师。主要目标是通过优化调度提高能源利用效率,减少碳排放,降低成本。 其他说明:文章提供了详细的代码片段和理论分析,有助于读者更好地理解和复现实验结果。同时,强调了在实际应用中需要注意的一些细节问题,如约束条件的平衡、求解器配置等。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
# 【spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-pinecone-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-pinecone-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-pinecone-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-pinecone-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-pinecone-store,1.0.0-M7,org.springframework.ai.vectorstore.pinecone,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,pinecone,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-pinecone
内容概要:本文详细介绍了如何使用MATLAB及其优化工具箱,通过混合整数规划(MILP)方法对微网电池储能系统的容量进行优化配置。主要内容包括定义目标函数(如最小化运行成本),设置约束条件(如充放电功率限制、能量平衡约束),并引入决策变量(如电池容量、充放电功率和状态)。文中提供了具体的MATLAB代码示例,演示了如何将实际问题转化为数学模型并求解。此外,还讨论了一些实用技巧,如避免充放电互斥冲突、考虑电池寿命损耗等。 适用人群:从事微电网设计与运维的技术人员,尤其是那些希望通过优化算法提高系统性能和经济效益的专业人士。 使用场景及目标:适用于需要确定最佳电池储能容量的微电网项目,旨在降低总体运行成本,提高系统的稳定性和可靠性。具体应用场景包括工业园区、商业建筑或其他分布式能源系统。 其他说明:文章强调了模型的实际应用价值,并指出通过精确控制充放电策略可以显著减少不必要的容量闲置,从而节省大量资金。同时提醒读者注意模型的时间粒度选择、电池退化成本等因素的影响。
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
内容概要:本文详细介绍了基于TMS320F28335的光伏离网并网逆变器设计方案,涵盖了从硬件架构到软件控制的各个方面。首先,文章阐述了TMS320F28335作为高性能DSP的优势及其初始化配置方法。其次,探讨了逆变器的数字控制策略,如双闭环控制(电压外环和电流内环)的具体实现方式。然后,深入讲解了SPWM(正弦脉宽调制)技术,包括SPWM波的生成方法和相关代码示例。此外,还讨论了硬件保护逻辑、过流检测、死区时间配置等实际应用中的注意事项。最后,提供了调试经验和学习资源建议。 适合人群:从事光伏逆变器设计、嵌入式系统开发的技术人员,尤其是有一定DSP编程基础的研发人员。 使用场景及目标:适用于需要深入了解光伏逆变器设计原理和技术实现的研究人员和工程师。主要目标是掌握基于TMS320F28335的逆变器控制系统设计,包括数字控制策略和SPWM技术的应用。 其他说明:文中提供的代码示例和实践经验有助于读者更好地理解和应用于实际项目中。建议读者结合TI官方提供的学习资料进行进一步学习和实践。
内容概要:深度学习在医疗影像分析中展现出显著的优势,主要体现在自动特征学习、高准确性和效率、多模态数据融合与综合分析、个性化治疗与预测、减少主观性、处理复杂和高维数据、实时分析与远程医疗支持、数据挖掘与科研突破以及可扩展性与持续优化九个方面。通过卷积神经网络(CNN)、U-Net等模型,深度学习能够自动从影像中提取多层次特征,无需手动干预,在分类、分割任务中表现出色,处理速度远超人工。此外,它还能够整合多源数据,提供全面的诊断依据,实现个性化治疗建议,减少误诊和漏诊,支持实时分析和远程医疗,挖掘病理模式并加速研究,同时具有可扩展性和持续优化的能力。; 适合人群:医疗行业从业者、科研人员、计算机视觉和深度学习领域的研究人员。; 使用场景及目标:①用于医疗影像的自动特征提取和分类,如乳腺癌筛查、皮肤癌诊断等;②整合多模态数据,如CT、MRI等,提高诊断准确性;③提供个性化治疗建议,优化治疗方案;④支持实时分析和远程医疗,尤其适用于偏远地区的急诊场景;⑤挖掘病理模式,加速疾病机制的研究。; 其他说明:深度学习正逐渐成为医疗影像分析的核心诊断伙伴,未来发展方向包括增强可解释性、保护数据隐私和轻量化部署,旨在进一步提升医疗效率和患者护理质量。
内容概要:深度学习是机器学习的一个子领域,通过构建多层次的“深度神经网络”来模拟人脑结构,从而学习和提取数据的复杂特征。文章介绍了深度学习的核心概念,包括神经元、多层感知机、深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等常见网络结构。同时,详细讲解了激活函数、损失函数与优化器的作用。此外,还探讨了深度学习的关键突破,如大数据与算力的支持、正则化技术和迁移学习的应用。文中列举了深度学习在计算机视觉、自然语言处理、语音与音频以及强化学习等领域的应用场景,并指出了其面临的挑战,如数据依赖、计算成本和可解释性问题。最后提供了使用PyTorch和TensorFlow/Keras框架的经典代码示例,涵盖图像分类、文本生成和迁移学习等内容。; 适合人群:对机器学习有一定了解,希望深入学习深度学习理论和技术的研究人员、工程师及学生。; 使用场景及目标:①理解深度学习的基本原理和核心概念;②掌握常见深度学习框架的使用方法,如PyTorch和TensorFlow;③能够根据具体应用场景选择合适的网络结构和算法进行实践。; 其他说明:本文不仅提供了理论知识,还附带了详细的代码示例,便于读者动手实践。建议读者结合理论与实践,逐步深入理解深度学习的各个方面。
适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文详细介绍了考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度方法。在供给侧,引入了有机朗肯循环(ORC)实现热电联产机组的灵活响应;在需求侧,提出电、热、气负荷之间的可替代性,以提高能源利用效率。构建了以最小化碳排放成本、购能成本、弃风成本和需求响应成本为目标的优化调度模型,并采用MATLAB和CPLEX进行了模型构建和求解。文中提供了具体的代码示例,展示了如何处理热电耦合、负荷替代和阶梯式碳交易等问题。 适合人群:从事能源系统优化、电力系统调度、碳交易等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要优化能源系统调度、降低成本并减少碳排放的实际应用场景。目标是帮助读者理解和掌握如何通过先进的技术和算法实现更加灵活和高效的能源调度。 其他说明:文章提供了完整的代码实现和服务支持,包括12种典型场景的数据集和预设模型,方便读者快速上手实践。
# 【spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-mcp-client-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-mcp-client-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-mcp-client-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-mcp-client,1.0.0-M7,org.springframework.ai.mcp.client.autoconfigure,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,autoc