- 浏览: 391661 次
- 性别:
- 来自: 上海
-
文章分类
- 全部博客 (215)
- ubuntu (27)
- 虚拟机 (13)
- 数据库 (29)
- JAVA (40)
- 搜索 (23)
- 开发工具 (2)
- 产品 (2)
- 工具 (1)
- 应用服务器 (5)
- linux (17)
- log (1)
- 多线程 (3)
- 异常 (1)
- shell (6)
- 12306 ;互联网 (1)
- 持续集成&Hudson (4)
- js (1)
- JAVA OR-Map (1)
- 漏洞 (1)
- svn (1)
- MAVEN (3)
- 架构 (1)
- windows (1)
- json (1)
- web (3)
- jenkins (2)
- iptables (2)
- JAVA ssh (0)
- 项目管理 (1)
- tomcat (1)
- 安全 (1)
- 数据库 mysql (1)
- 性能 (1)
最新评论
-
sbwfgihc:
怎么用的啊,
<转>mysql 树查询语句 -
panghaoyu:
实现一个智能提示功能需要ajax、数据库、jsp/php、算法 ...
<转>Solr Suggest实现搜索智能提示 -
songsove:
请问您qq多少
solr 对拼音搜索和拼音首字母搜索的支持 -
panghaoyu:
实现一个智能提示功能需要ajax、数据库、jsp/php、算法 ...
<转>Solr Suggest实现搜索智能提示 -
norain1988:
这样就可以实现相关搜索了吗
solr 百度相关搜索类似功能的实现
原链接:http://heipark.iteye.com/blog/1156011
newFixedThreadPool
创建一个固定大小的线程池。
shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭。
awaitTermination():用于等待子线程结束,再继续执行下面的代码。该例中我设置一直等着子线程结束。
- public class Test {
- public static void main(String[] args) throws IOException, InterruptedException {
- ExecutorService service = Executors.newFixedThreadPool(2);
- for (int i = 0; i < 4; i++) {
- Runnable run = new Runnable() {
- @Override
- public void run() {
- System.out.println("thread start");
- }
- };
- service.execute(run);
- }
- service.shutdown();
- service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
- System.out.println("all thread complete");
- }
- }
thread start
thread start
thread start
all thread complete
newScheduledThreadPool
这个先不说,我喜欢用spring quartz.
CyclicBarrier
假设有只有的一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待.
- import java.io.IOException;
- import java.util.Random;
- import java.util.concurrent.BrokenBarrierException;
- import java.util.concurrent.CyclicBarrier;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- class Runner implements Runnable {
- private CyclicBarrier barrier;
- private String name;
- public Runner(CyclicBarrier barrier, String name) {
- super();
- this.barrier = barrier;
- this.name = name;
- }
- @Override
- public void run() {
- try {
- Thread.sleep(1000 * (new Random()).nextInt(8));
- System.out.println(name + " 准备OK.");
- barrier.await();
- } catch (InterruptedException e) {
- e.printStackTrace();
- } catch (BrokenBarrierException e) {
- e.printStackTrace();
- }
- System.out.println(name + " Go!!");
- }
- }
- public class Race {
- public static void main(String[] args) throws IOException, InterruptedException {
- CyclicBarrier barrier = new CyclicBarrier(3);
- ExecutorService executor = Executors.newFixedThreadPool(3);
- executor.submit(new Thread(new Runner(barrier, "zhangsan")));
- executor.submit(new Thread(new Runner(barrier, "lisi")));
- executor.submit(new Thread(new Runner(barrier, "wangwu")));
- executor.shutdown();
- }
- }
zhangsan 准备OK.
lisi 准备OK.
lisi Go!!
zhangsan Go!!
wangwu Go!!
ThreadPoolExecutor
newFixedThreadPool生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。
ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)
corePoolSize:池中所保存的线程数,包括空闲线程(非最大同时干活的线程数)。如果池中线程数多于 corePoolSize,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。
maximumPoolSize:线程池中最大线程数
keepAliveTime:线程空闲回收的时间
unit:keepAliveTime的单位
workQueue:保存任务的队列,可以如下选择:
- 无界队列: new LinkedBlockingQueue<Runnable>();
- 有界队列: new ArrayBlockingQueue<Runnable>(8);你不想让客户端无限的请求吃光你的CPU和内存吧,那就用有界队列
handler:
当提交任务数大于队列size会抛出RejectedExecutionException,可选的值为:
- ThreadPoolExecutor.CallerRunsPolicy 等待队列空闲
- ThreadPoolExecutor.DiscardPolicy:丢弃要插入队列的任务
- ThreadPoolExecutor.DiscardOldestPolicy:删除队头的任务
关于corePoolSize和maximumPoolSize:
- public class Test {
- public static void main(String[] args) {
- BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();
- ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue);
- for (int i = 0; i < 20; i++) {
- final int index = i;
- executor.execute(new Runnable() {
- public void run() {
- try {
- Thread.sleep(4000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(String.format("thread %d finished", index));
- }
- });
- }
- executor.shutdown();
- }
- }
原子变量(Atomic )
并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
- import java.io.File;
- import java.io.FileFilter;
- import java.util.concurrent.BlockingQueue;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.LinkedBlockingQueue;
- import java.util.concurrent.atomic.AtomicInteger;
- public class Test {
- static long randomTime() {
- return (long) (Math.random() * 1000);
- }
- public static void main(String[] args) {
- // 能容纳100个文件
- final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100);
- // 线程池
- final ExecutorService exec = Executors.newFixedThreadPool(5);
- final File root = new File("D:\\dist\\blank");
- // 完成标志
- final File exitFile = new File("");
- // 读个数
- final AtomicInteger rc = new AtomicInteger();
- // 写个数
- final AtomicInteger wc = new AtomicInteger();
- // 读线程
- Runnable read = new Runnable() {
- public void run() {
- scanFile(root);
- scanFile(exitFile);
- }
- public void scanFile(File file) {
- if (file.isDirectory()) {
- File[] files = file.listFiles(new FileFilter() {
- public boolean accept(File pathname) {
- return pathname.isDirectory() || pathname.getPath().endsWith(".log");
- }
- });
- for (File one : files)
- scanFile(one);
- } else {
- try {
- int index = rc.incrementAndGet();
- System.out.println("Read0: " + index + " " + file.getPath());
- queue.put(file);
- } catch (InterruptedException e) {
- }
- }
- }
- };
- exec.submit(read);
- // 四个写线程
- for (int index = 0; index < 4; index++) {
- // write thread
- final int num = index;
- Runnable write = new Runnable() {
- String threadName = "Write" + num;
- public void run() {
- while (true) {
- try {
- Thread.sleep(randomTime());
- int index = wc.incrementAndGet();
- File file = queue.take();
- // 队列已经无对象
- if (file == exitFile) {
- // 再次添加"标志",以让其他线程正常退出
- queue.put(exitFile);
- break;
- }
- System.out.println(threadName + ": " + index + " " + file.getPath());
- } catch (InterruptedException e) {
- }
- }
- }
- };
- exec.submit(write);
- }
- exec.shutdown();
- }
- }
CountDownLatch
从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。
CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。
一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。
下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。
- import java.util.concurrent.CountDownLatch;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- public class Test {
- public static void main(String[] args) throws InterruptedException {
- // 开始的倒数锁
- final CountDownLatch begin = new CountDownLatch(1);
- // 结束的倒数锁
- final CountDownLatch end = new CountDownLatch(10);
- // 十名选手
- final ExecutorService exec = Executors.newFixedThreadPool(10);
- for (int index = 0; index < 10; index++) {
- final int NO = index + 1;
- Runnable run = new Runnable() {
- public void run() {
- try {
- begin.await();
- Thread.sleep((long) (Math.random() * 10000));
- System.out.println("No." + NO + " arrived");
- } catch (InterruptedException e) {
- } finally {
- end.countDown();
- }
- }
- };
- exec.submit(run);
- }
- System.out.println("Game Start");
- begin.countDown();
- end.await();
- System.out.println("Game Over");
- exec.shutdown();
- }
- }
使用Callable和Future实现线程等待
- import java.util.concurrent.Callable;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
- public class Test {
- public static void main(String[] args) throws InterruptedException, ExecutionException {
- System.out.println("start main thread");
- final ExecutorService exec = Executors.newFixedThreadPool(5);
- Callable<String> call = new Callable<String>() {
- public String call() throws Exception {
- System.out.println(" start new thread.");
- Thread.sleep(1000 * 5);
- System.out.println(" end new thread.");
- return "some value.";
- }
- };
- Future<String> task = exec.submit(call);
- Thread.sleep(1000 * 2);
- task.get(); // 阻塞,并待子线程结束,
- exec.shutdown();
- System.out.println("end main thread");
- }
- }
CompletionService
这个东西的使用上很类似上面的example,不同的是,它会首先取完成任务的线程。下面的参考文章里,专门提到这个,大家有兴趣可以看下,例子:
- import java.util.concurrent.Callable;
- import java.util.concurrent.CompletionService;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorCompletionService;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
- public class Test {
- public static void main(String[] args) throws InterruptedException,
- ExecutionException {
- ExecutorService exec = Executors.newFixedThreadPool(10);
- CompletionService<String> serv =
- new ExecutorCompletionService<String>(exec);
- for (int index = 0; index < 5; index++) {
- final int NO = index;
- Callable<String> downImg = new Callable<String>() {
- public String call() throws Exception {
- Thread.sleep((long) (Math.random() * 10000));
- return "Downloaded Image " + NO;
- }
- };
- serv.submit(downImg);
- }
- Thread.sleep(1000 * 2);
- System.out.println("Show web content");
- for (int index = 0; index < 5; index++) {
- Future<String> task = serv.take();
- String img = task.get();
- System.out.println(img);
- }
- System.out.println("End");
- // 关闭线程池
- exec.shutdown();
- }
- }
Semaphore信号量
拿到信号量的线程可以进入代码,否则就等待。通过acquire()和release()获取和释放访问许可。下面的例子只允许5个线程同时进入执行acquire()和release()之间的代码
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Semaphore;
- public class Test {
- public static void main(String[] args) {
- // 线程池
- ExecutorService exec = Executors.newCachedThreadPool();
- // 只能5个线程同时访问
- final Semaphore semp = new Semaphore(5);
- // 模拟20个客户端访问
- for (int index = 0; index < 20; index++) {
- final int NO = index;
- Runnable run = new Runnable() {
- public void run() {
- try {
- // 获取许可
- semp.acquire();
- System.out.println("Accessing: " + NO);
- Thread.sleep((long) (Math.random() * 10000));
- // 访问完后,释放
- semp.release();
- } catch (InterruptedException e) {
- }
- }
- };
- exec.execute(run);
- }
- // 退出线程池
- exec.shutdown();
- }
- }
参考:
jdk1.5中的线程池使用简介
http://www.java3z.com/cwbwebhome/article/article2/2875.html
CAS原理
http://www.blogjava.net/syniii/archive/2010/11/18/338387.html?opt=admin
jdk1.5中java.util.concurrent包编写多线程
http://hi.baidu.com/luotoo/blog/item/b895c3c2d650591e0ef47731.html
ExecutorSerive vs CompletionService
http://www.coderanch.com/t/491704/threads/java/ExecutorSerive-vs-CompletionService
-- end --
相关推荐
内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。
palkert_3ck_01_0918
pepeljugoski_01_1106
tatah_01_1107
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。
该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。
palkert_3ck_02_0719
克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。
AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx
matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
pepeljugoski_01_0508
szczepanek_01_0308
oif2007.384.01_IEEE
stone_3ck_01_0119
oganessyan_01_1107