`
san_yun
  • 浏览: 2639083 次
  • 来自: 杭州
文章分类
社区版块
存档分类
最新评论

Netty实现原理浅析

 
阅读更多

Netty是JBoss出品的高效的Java NIO开发框架,关于其使用,可参考我的另一篇文章 netty使用初步 。 本文将主要分析Netty实现方面的东西,由于精力有限,本人并没有对其源码做了极细致的研 究。如果下面的内容有错误或不严谨的地方,也请指正和谅解。对于Netty使用者来说,Netty提供了几个典型的example,并有详尽的API doc和guide doc,本文的一些内容及图示也来自于Netty的文档,特此致谢。

1、总体结构

先放上一张漂亮的Netty总体结构图,下面的内容也主要围绕该图上的一些核心功能做分析,但对如Container Integration及Security Support等高级可选功能,本文不予分析。

2、网络模型

Netty是典型的Reactor模型结构,关于Reactor的详尽阐释,可参考POSA2,这里不做概念性的解释。而应用Java NIO构建Reactor模式,Doug Lea(就是那位让人无限景仰的大爷)在“Scalable IO in Java ”中给了很好的阐述。这里截取其PPT中经典的图例说明 Reactor模式的典型实现:

1、这是最简单的单Reactor单线程模型。Reactor线程是个多面手,负责多路分离套接字,Accept新连接,并分派请求到处理器链中。该模型 适用于处理器链中业务处理组件能快速完成的场景。不过,这种单线程模型不能充分利用多核资源,所以实际使用的不多。

2、相比上一种模型,该模型在处理器链部分采用了多线程(线程池),也是后端程序常用的模型。

3、 第三种模型比起第二种模型,是将Reactor分成两部分,mainReactor负责监听server socket,accept新连接,并将建立的socket分派给subReactor。subReactor负责多路分离已连接的socket,读写网 络数据,对业务处理功能,其扔给worker线程池完成。通常,subReactor个数上可与CPU个数等同。

说完Reacotr模型的三种形式,那么Netty是哪种呢?其实,我还有一种Reactor模型的变种没说,那就是去掉线程池的第三种形式的变 种,这也 是Netty NIO的默认模式。在实现上,Netty中的Boss类充当mainReactor,NioWorker类充当subReactor(默认 NioWorker的个数是Runtime.getRuntime().availableProcessors())。在处理新来的请求 时,NioWorker读完已收到的数据到ChannelBuffer中,之后触发ChannelPipeline中的ChannelHandler流。

Netty是事件驱动的,可以通过ChannelHandler链来控制执行流向。因为ChannelHandler链的执行过程是在 subReactor中同步的,所以如果业务处理handler耗时长,将严重影响可支持的并发数。这种模型适合于像Memcache这样的应用场景,但 对需要操作数据库或者和其他模块阻塞交互的系统就不是很合适。Netty的可扩展性非常好,而像ChannelHandler线程池化的需要,可以通过在 ChannelPipeline中添加Netty内置的ChannelHandler实现类–ExecutionHandler实现,对使用者来说只是 添加一行代码而已。对于ExecutionHandler需要的线程池模型,Netty提供了两种可 选:1) MemoryAwareThreadPoolExecutor 可控制Executor中待处理任务的上限(超过上限时,后续进来的任务将被阻 塞),并可控制单个Channel待处理任务的上限;2) OrderedMemoryAwareThreadPoolExecutor 是  MemoryAwareThreadPoolExecutor 的子类,它还可以保证同一Channel中处理的事件流的顺序性,这主要是控制事件在异步处 理模式下可能出现的错误的事件顺序,但它并不保证同一Channel中的事件都在一个线程中执行(通常也没必要)。一般来 说,OrderedMemoryAwareThreadPoolExecutor 是个很不错的选择,当然,如果有需要,也可以DIY一个。

3、 buffer

org.jboss.netty.buffer包的接口及类的结构图如下:

该包核心的接口是ChannelBuffer和ChannelBufferFactory,下面予以简要的介绍。

Netty使用ChannelBuffer来存储并操作读写的网络数据。ChannelBuffer除了提供和ByteBuffer类似的方法,还提供了 一些实用方法,具体可参考其API文档。ChannelBuffer的实现类有多个,这里列举其中主要的几个:

1)HeapChannelBuffer:这是Netty读网络数据时默认使用的ChannelBuffer,这里的Heap就是Java堆的意 思,因为 读SocketChannel的数据是要经过ByteBuffer的,而ByteBuffer实际操作的就是个byte数组,所以 ChannelBuffer的内部就包含了一个byte数组,使得ByteBuffer和ChannelBuffer之间的转换是零拷贝方式。根据网络字 节续的不同,HeapChannelBuffer又分为BigEndianHeapChannelBuffer和 LittleEndianHeapChannelBuffer,默认使用的是BigEndianHeapChannelBuffer。Netty在读网络 数据时使用的就是HeapChannelBuffer,HeapChannelBuffer是个大小固定的buffer,为了不至于分配的Buffer的 大小不太合适,Netty在分配Buffer时会参考上次请求需要的大小。

2)DynamicChannelBuffer:相比于HeapChannelBuffer,DynamicChannelBuffer可动态自适 应大 小。对于在DecodeHandler中的写数据操作,在数据大小未知的情况下,通常使用DynamicChannelBuffer。

3)ByteBufferBackedChannelBuffer:这是directBuffer,直接封装了ByteBuffer的 directBuffer。

对于读写网络数据的buffer,分配策略有两种:1)通常出于简单考虑,直接分配固定大小的buffer,缺点是,对一些应用来说这个大小限制有 时是不 合理的,并且如果buffer的上限很大也会有内存上的浪费。2)针对固定大小的buffer缺点,就引入动态buffer,动态buffer之于固定 buffer相当于List之于Array。

buffer的寄存策略常见的也有两种(其实是我知道的就限于此):1)在多线程(线程池) 模型下,每个线程维护自己的读写buffer,每次处理新的请求前清空buffer(或者在处理结束后清空),该请求的读写操作都需要在该线程中完成。 2)buffer和socket绑定而与线程无关。两种方法的目的都是为了重用buffer。

Netty对buffer的处理策略是:读 请求数据时,Netty首先读数据到新创建的固定大小的HeapChannelBuffer中,当HeapChannelBuffer满或者没有数据可读 时,调用handler来处理数据,这通常首先触发的是用户自定义的DecodeHandler,因为handler对象是和ChannelSocket 绑定的,所以在DecodeHandler里可以设置ChannelBuffer成员,当解析数据包发现数据不完整时就终止此次处理流程,等下次读事件触 发时接着上次的数据继续解析。就这个过程来说,和ChannelSocket绑定的DecodeHandler中的Buffer通常是动态的可重用 Buffer(DynamicChannelBuffer),而在NioWorker中读ChannelSocket中的数据的buffer是临时分配的 固定大小的HeapChannelBuffer,这个转换过程是有个字节拷贝行为的。

对ChannelBuffer的创建,Netty内部使用的是ChannelBufferFactory接口,具体的实现有 DirectChannelBufferFactory和HeapChannelBufferFactory。对于开发者创建 ChannelBuffer,可使用实用类ChannelBuffers中的工厂方法。

4、Channel

和Channel相关的接口及类结构图如下:

从该结构图也可以看到,Channel主要提供的功能如下:

1)当前Channel的状态信息,比如是打开还是关闭等。
2)通过ChannelConfig可以得到的Channel配置信息。
3)Channel所支持的如read、write、bind、connect等IO操作。
4)得到处理该Channel的ChannelPipeline,既而可以调用其做和请求相关的IO操作。

在Channel实现方面,以通常使用的nio socket来说,Netty中的NioServerSocketChannel和NioSocketChannel分别封装了java.nio中包含的 ServerSocketChannel和SocketChannel的功能。

5、ChannelEvent

如前所述,Netty是事件驱动的,其通过ChannelEvent来确定事件流的方向。一个ChannelEvent是依附于Channel的 ChannelPipeline来处理,并由ChannelPipeline调用ChannelHandler来做具体的处理。下面是和 ChannelEvent相关的接口及类图:

对于使用者来说,在ChannelHandler实现类中会使用继承于ChannelEvent的MessageEvent,调用其 getMessage()方法来获得读到的ChannelBuffer或被转化的对象。

6、ChannelPipeline

Netty 在事件处理上,是通过ChannelPipeline来控制事件流,通过调用注册其上的一系列ChannelHandler来处理事件,这也是典型的拦截 器模式。下面是和ChannelPipeline相关的接口及类图:

事件流有两种,upstream事件和downstream事件。在ChannelPipeline中,其可被注册的ChannelHandler 既可以 是 ChannelUpstreamHandler 也可以是ChannelDownstreamHandler ,但事件在ChannelPipeline传递过程中只会调用匹配流的ChannelHandler。在事件流的过滤器链 中,ChannelUpstreamHandler或ChannelDownstreamHandler既可以终止流程,也可以通过调用 ChannelHandlerContext.sendUpstream(ChannelEvent)或 ChannelHandlerContext.sendDownstream(ChannelEvent)将事件传递下去。下面是事件流处理的图示:

从上图可见,upstream event是被Upstream Handler们自底向上逐个处理,downstream event是被Downstream Handler们自顶向下逐个处理,这里的上下关系就是向ChannelPipeline里添加Handler的先后顺序关系。简单的理 解,upstream event是处理来自外部的请求的过程,而downstream event是处理向外发送请求的过程。

服务端处 理请求的过程通常就是解码请求、业务逻辑处理、编码响应,构建的ChannelPipeline也就类似下面的代码片断:

ChannelPipeline pipeline =
 Channels.pipeline
(
)
;

pipeline.addLast
(
"decoder"
, new
 MyProtocolDecoder(
)
)
;

pipeline.addLast
(
"encoder"
, new
 MyProtocolEncoder(
)
)
;

pipeline.addLast
(
"handler"
, new
 MyBusinessLogicHandler(
)
)
;

其中,MyProtocolDecoder是ChannelUpstreamHandler类型,MyProtocolEncoder是 ChannelDownstreamHandler类型,MyBusinessLogicHandler既可以是 ChannelUpstreamHandler类型,也可兼ChannelDownstreamHandler类型,视其是服务端程序还是客户端程序以及 应用需要而定。

补充一点,Netty对抽象和实现做了很好的解耦。像org.jboss.netty.channel.socket包, 定义了一些和socket处理相关的接口,而org.jboss.netty.channel.socket.nio、 org.jboss.netty.channel.socket.oio等包,则是和协议相关的实现。

7、codec framework

对于请求协议的编码解码,当然是可以按照协议格式自己操作ChannelBuffer中的字节数据。另一方面,Netty也做了几个很实用的codec helper,这里给出简单的介绍。

1)FrameDecoder:FrameDecoder内部维护了一个 DynamicChannelBuffer成员来存储接收到的数据,它就像个抽象模板,把整个解码过程模板写好了,其子类只需实现decode函数即可。 FrameDecoder的直接实现类有两个:(1)DelimiterBasedFrameDecoder是基于分割符 (比如\r\n)的解码器,可在构造函数中指定分割符。(2)LengthFieldBasedFrameDecoder是基于长度字段的解码器。如果协 议 格式类似“内容长度”+内容、“固定头”+“内容长度”+动态内容这样的格式,就可以使用该解码器,其使用方法在API DOC上详尽的解释。
2)ReplayingDecoder: 它是FrameDecoder的一个变种子类,它相对于FrameDecoder是非阻塞解码。也就是说,使用 FrameDecoder时需要考虑到读到的数据有可能是不完整的,而使用ReplayingDecoder就可以假定读到了全部的数据。
3)ObjectEncoder 和ObjectDecoder:编码解码序列化的Java对象。
4)HttpRequestEncoder和 HttpRequestDecoder:http协议处理。

下面来看使用FrameDecoder和ReplayingDecoder的两个例子:

	public
 class
 IntegerHeaderFrameDecoder extends
 FrameDecoder {

		protected
 Object
 decode(
ChannelHandlerContext ctx, Channel channel,
				ChannelBuffer buf)
 throws
 Exception
 {

			if
 (
buf.readableBytes
(
)
 &
lt;
 4
)
 {

				return
 null
;

			}

			buf.markReaderIndex
(
)
;

			int
 length =
 buf.readInt
(
)
;

			if
 (
buf.readableBytes
(
)
 &
lt;
 length)
 {

				buf.resetReaderIndex
(
)
;

				return
 null
;

			}

			return
 buf.readBytes
(
length)
;

		}

	}

而使用ReplayingDecoder的解码片断类似下面的,相对来说会简化很多。

	public
 class
 IntegerHeaderFrameDecoder2 extends
 ReplayingDecoder {

		protected
 Object
 decode(
ChannelHandlerContext ctx, Channel channel,
				ChannelBuffer buf, VoidEnum state)
 throws
 Exception
 {

			return
 buf.readBytes
(
buf.readInt
(
)
)
;

		}

	}

就实现来说,当在ReplayingDecoder子类的decode函数中调用ChannelBuffer读数据时,如果读失败,那么 ReplayingDecoder就会catch住其抛出的Error,然后ReplayingDecoder接手控制权,等待下一次读到后续的数据后继 续decode。

8、小结

尽管该文行至此处将止,但该文显然没有将Netty实现原理深入浅出的说全说透。当我打算写这篇文章时,也是一边看Netty的代码,一边总结些可 写的东 西,但前后断断续续,到最后都没了多少兴致。我还是爱做一些源码分析的事情,但精力终究有限,并且倘不能把源码分析的结果有条理的托出来,不能产生有意义 的心得,这分析也没什么价值和趣味。而就分析Netty代码的感受来说,Netty的代码很漂亮,结构上层次上很清晰,不过这种面向接口及抽象层次对代码 跟踪很是个问题,因为跟踪代码经常遇到接口和抽象类,只能借助于工厂类和API DOC,反复对照接口和实现类的对应关系。就像几乎任何优秀的Java开源项目都会用上一系列优秀的设计模式,也完全可以从模式这一点单独拿出一篇分析文 章来,尽管我目前没有这样的想法。而在此文完成之后,我也没什么兴趣再看Netty的代码了。

分享到:
评论

相关推荐

    小程序毕业设计-基于微信小程序的影院选座系统+ssm(包括源码,数据库,教程).zip

    Java 毕业设计,小程序毕业设计,小程序课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 1. 技术组成 前端: 小程序 后台框架:SSM/SpringBoot(如果有的话) 开发环境:idea,微信开发者工具 数据库:MySql(建议用 5.7 版本,8.0 有时候会有坑) 数据库可视化工具:使用 Navicat 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven

    大二下算法作业,迷宫生成算法以及基于递归的求解,可以在blender中生成3D模型.zip

    大二下算法作业,迷宫生成算法以及基于递归的求解,可以在blender中生成3D模型.zip

    小程序毕业设计-基于微信小程序的在线视频教育系统+ssm(包括源码,数据库,教程).zip

    Java 毕业设计,小程序毕业设计,小程序课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 1. 技术组成 前端: 小程序 后台框架:SSM/SpringBoot(如果有的话) 开发环境:idea,微信开发者工具 数据库:MySql(建议用 5.7 版本,8.0 有时候会有坑) 数据库可视化工具:使用 Navicat 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven

    基于SpringBoot+Vue.JS前后端分离的游乐园管理系统 源码+数据库+录屏(毕业设计)

    游乐园管理系统是一个综合性的软件解决方案,旨在为游乐园提供高效的日常运营支持。该系统采用现代的前后端分离架构,前端使用Vue.js框架,后端则基于SpringBoot框架进行开发。Vue.js是一个渐进式JavaScript框架,它易于上手且灵活,非常适合构建用户界面。SpringBoot则提供了快速开发的能力,简化了配置和部署过程,使得后端服务的开发更加高效。 用户管理:允许管理员管理游客信息,包括注册、登录、权限分配等。 设施管理:对游乐园内的游乐设施进行管理,包括设施信息的录入、更新和维护。 票务系统:处理门票销售、折扣策略、在线预订等功能。 安全监控:实时监控游乐园内的安全状况,确保游客的安全。 数据分析:收集和分析游客行为数据,为游乐园的运营决策提供支持。 客户服务:提供客户服务功能,如失物招领、投诉处理等。 启动教程:https://www.bilibili.com/video/BV1SzbFe7EGZ

    《深度学习入门 基于Python的理论与实现》学习笔记.zip

    深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。

    java-ssh-jsp-mysql小区物业管理系统实现源码(项目源码-说明文档)

    本系统采用了BS架构的模式开发,利用浏览器就可以随处打开,也就是说小区的住户在家里就能进行上网,打开网站,进行物业费的缴费。系统采用了SSH框架技术开发,数据库采用了mysql数据库进行管理 物业管理系统,分为前后台的管理,系统的主要功能包括:业主信息管理,小区新闻,小区风景的展示,在线水电费的缴费,在线对小区设备的报修等 项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7+ 后端技术:ssh 前端技术:jsp 关键技术:jsp、spring、ssm、ssh、MYSQL、MAVEN 数据库工具:Navicat、SQLyog

    高仿网易云课堂小程序源码学习

    高仿网易云课堂小程序源码学习

    SAP S4新建用户,分配用户,激活用户

    SAP S4的BAISIS 已经取消,但 新建用户,分配用户,以及权限分配 激活用户的均是需要掌握的

    智能翻译官cpc-bd07-20752777288491826.exe

    ‌智能翻译官获得了广泛的好评‌,这主要得益于其高效、准确以及用户友好的特性。以下是一些具体的评价细节: ‌用户界面和操作体验‌:智能翻译官提供了一个直观且易于使用的界面,使得用户能够轻松地进行翻译操作。无论是文字输入、拍照翻译还是语音输入,智能翻译官都能提供流畅的使用体验,大大提高了用户的工作和沟通效率‌12。 ‌翻译准确性和速度‌:智能翻译官在翻译准确性和速度方面表现出色。它支持多种语言的翻译,包括但不限于英语、日语、韩语等,并且能够在短时间内完成翻译,确保了沟通的实时性和有效性‌23。 ‌功能多样性‌:除了基本的翻译功能外,智能翻译官还提供了同声传译、录音文件保存、实景AR翻译等多种功能。这些功能使得智能翻译官成为开会、旅行等多种场景下的理想选择‌2。 ‌用户反馈‌:从用户反馈来看,智能翻译官不仅受到了普通用户的欢迎,也得到了专业人士的认可。无论是学生、商务人士还是旅游者,都对其表示满意,认为它极大地便利了他们的学习和生活‌12。 综上所述,智能翻译官以其高效、准确、用户友好的特点,赢得了广泛的好评和推荐。无论是对于需要频繁进行语言沟通的用户,还是对于需要学习不同语言的学

    喜鹤付费V3(1).zip

    喜鹤付费V3(1).zip

    c#代码介绍23种设计模式-03工厂模式(附代码)

    1. 工厂方法模式之所以可以解决简单工厂的模式: 是因为它的实现把具体产品的创建推迟到子类中,此时工厂类不再负责所有产品的创建,而只是给出具体工厂必须实现的接口, 这样工厂方法模式就可以允许系统不修改工厂类逻辑的情况下来添加新产品,这样也就克服了简单工厂模式中缺点 2. 使用工厂方法实现的系统,如果系统需要添加新产品时: 我们可以利用多态性来完成系统的扩展,对于抽象工厂类和具体工厂中的代码都不需要做任何改动。 例如,我们我们还想点一个“肉末茄子”,此时我们只需要定义一个肉末茄子具体工厂类和肉末茄子类就可以。而不用像简单工厂模式中那样去修改工厂类中的实现 3. 从UML图可以看出,在工厂方法模式中,工厂类与具体产品类具有平行的等级结构,它们之间是一一对应的。针对UML图的解释如下: Creator类:充当抽象工厂角色,任何具体工厂都必须继承该抽象类 TomatoScrambledEggsFactory和ShreddedPorkWithPotatoesFactory类:充当具体工厂角色,用来创建具体产品 Food类:充当抽象产品角色,具体产品的抽象类。任何具体产品都应该继承该类 Tom

    基于深度学习的手语识别项目.zip

    深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。

    【5层】2800平米框架商务写字楼毕业设计(含计算书,建筑、结构图).zip

    【5层】2800平米框架商务写字楼毕业设计(含计算书,建筑、结构图) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 、6可私信博主看论文后选择购买源代码。

    大气污染控制工程课程设计某厂燃煤锅炉烟气除尘处理工程方案设计.doc

    大气污染控制工程课程设计某厂燃煤锅炉烟气除尘处理工程方案设计.doc

    EXCLE批量写入模版

    你是否遇到过老板各种苛刻的要求?例如,你手上有份excel表格汇总着上千信息条,老板却要求你把每条信息保存为独立一份excel工作薄,上千条信息条就是要生成上千份工作薄,怎么做?手动录入?有加班工资吗?没有的话,以下的excel模版能帮到你!只需按一下按钮,加班?NO!直接摸鱼~~(WPS、EXCEL均可正常使用)

    win64 CC2024.zip

    SmartTools InDesign插件

    火焰火圈喷火特效:Stylized Fire Effects Pack v3.0

    该包包含 10 个预制体: - 火焰喷射器 - 火球 - 火之魔球 - 火把 - 篝火 - 小型篝火 - 烟雾 - 火墙 - 火环 - 火区域。 这个在 3D 和 2D 视图中都能使用。

    2023中国大陆薪资指南.pdf

    2023中国大陆薪资指南.pdf

    基于深度学习来实现序列到序列.zip

    深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。

    react-hooks实现-前端《无缝轮播图》

    使用react hooks + antd + sass实现一个简易的无缝轮播图,整体核心代码不到30行,当然如果想自定义一些配置,可以继续扩展,目前只配置了支持展示多少个轮播片。 如果想了解无缝轮播图的原理,可以直接无脑入这个,真的对于新手或者对于动画弱项的前端小伙伴们学习!

Global site tag (gtag.js) - Google Analytics