《Hadoop: The Definitive Guide》reading notes:
This, in a nutshell, is what Hadoop provides: a reliable shared storage and analysis system. The storage is provided by HDFS and analysis by MapReduce. There are other parts to Hadoop, but these capabilities are its kernel.
MapReduce:
http://strata.oreilly.com/2011/01/what-is-hadoop.html引用
MapReduce: you map the operation out to all of those servers and then you reduce the results back into a single result set.
MapReduce can be seen as a
complement to a Rational Database Management System (RDBMS).
MapReduce is a good fit for problems that need to analyze the whole dataset in a batch fashion, particularly for ad hoc analysis. An RDBMS is good for point queries or updates, where the dataset has been indexed to deliver low-latency retrieval and update times of a relatively small amount of data.
MapReduce suits applications where the data is written once and read many times, whereas a relational database is good for datasets that are continually updated.
Another difference between MapReduce and an RDBMS is the amount of structure in the datasets on which they operate. Structured data is data that is organized into entities that have a defined format, such as XML documents or database tables that conform to a particular predefined schema. This is the realm of the RDBMS. Semi-structured data, on the other hand, is looser, and though there may be a schema, it is often ignored, so it may be used only as a guide to the structure of the data: for example, a spreadsheet, in which the structure is the grid of cells, although the cells themselves may hold any form of data. Unstructured data does not have any particular internal structure: for example, plain text or image data.
MapReduce works well on unstructured or semistructured data because it is designed to interpret the data at processing time. In other words, the input keys and values for MapReduce are not intrinsic properties of the data, but they are chosen by the person analyzing the data.
Chapter2 MapRecduce - Scaling Out 全章节需读透:
引用
A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks.
There are two types of nodes that control the job execution process: a jobtracker and
a number of tasktrackers. The jobtracker coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress
reports to the jobtracker, which keeps a record of the overall progress of each job. If a
task fails, the jobtracker can reschedule it on a different tasktracker.
Hadoop divides the input to a MapReduce job into fixed-size pieces called input
splits, or just splits. Hadoop creates one map task for each split, which runs the userdefined
map function for each record in the split.
HDFS:
These are areas where HDFS is not a good fit today:
1 Low-latency(低延时) data access - HDFS is optimized for delivering a high throughput of data, and this may be at the expense of latency.
HBase is currently a better choice for low-latency access.
2 Lots of small files - Because the namenode holds filesystem metadata in memory, the limit to the number of files in a filesystem is governed by the amount of memory on the namenode.
3 Multiple writers, arbitrary file modifications - Files in HDFS may be written to by a single writer. Writes are always made at the end of the file. There is no support for multiple writers or for modifications at arbitrary offsets in the file. (These might be supported in the future, but they are likely to be relatively inefficient.)
Hadoop Default Ports Quick Reference:
http://blog.cloudera.com/blog/2009/08/hadoop-default-ports-quick-reference/
Hadoop FS Shell Guide (0.19):
http://hadoop.apache.org/docs/r0.19.1/hdfs_shell.html
- 大小: 29.8 KB
分享到:
相关推荐
Hadoop 是一个处理、存储和分析海量的分布式、非结构化数据的开源框架。最初由 Yahoo 的工程师 Doug Cutting 和 Mike Cafarella Hadoop 是一个处理、存储和分析海量的分布式、非结构化数据的开源框架。最初由 Yahoo...
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分布式存储。Hadoop 2.7.3是这个框架的一个稳定版本,它包含了多个改进和优化,以提高性能和稳定性。在这个版本中,Winutils.exe和hadoop.dll是两...
此文件为hadoop-2.7.7.tar.gz,可在linux下直接进行安装,如在windows上安装,则需要hadooponwindows-master.zip,用windows-master里的文件替换解压好后hadoop的bin和etc即可。Hadoop 2.7.7是一款开源的分布式计算...
Apache Hadoop是一个开源框架,主要用于分布式存储和计算大数据集。Hadoop 3.1.0是这个框架的一个重要版本,提供了许多性能优化和新特性。在Windows环境下安装和使用Hadoop通常比在Linux上更为复杂,因为Hadoop最初...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分布式存储。标题"hadop2.7.x_winutils_exe&&hadoop_dll"暗示我们关注的是Hadoop 2.7.x版本在Windows环境下的两个关键组件:`winutils.exe`和`...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分布式存储。Hadoop 2.7.3是Hadoop发展中的一个重要版本,它包含了众多的优化和改进,旨在提高性能、稳定性和易用性。在这个版本中,`hadoop.dll`...
在Hadoop生态系统中,`hadoop.dll`和`winutils.exe`是两个关键组件,尤其对于Windows用户来说,它们在本地开发和运行Hadoop相关应用时必不可少。`hadoop.dll`是一个动态链接库文件,主要用于在Windows环境中提供...
在Hadoop生态系统中,Hadoop 2.7.7是一个重要的版本,它为大数据处理提供了稳定性和性能优化。Hadoop通常被用作Linux环境下的分布式计算框架,但有时开发者或学习者在Windows环境下也需要进行Hadoop相关的开发和测试...
在Windows环境下安装Hadoop 3.1.0是学习和使用大数据处理技术的重要步骤。Hadoop是一个开源框架,主要用于分布式存储和处理大规模数据集。在这个过程中,我们将详细讲解Hadoop 3.1.0在Windows上的安装过程以及相关...
标题 "hadoop2.6 hadoop.dll+winutils.exe" 提到的是Hadoop 2.6版本中的两个关键组件:`hadoop.dll` 和 `winutils.exe`,这两个组件对于在Windows环境中配置和运行Hadoop至关重要。Hadoop原本是为Linux环境设计的,...
在windows环境下开发hadoop时,需要配置HADOOP_HOME环境变量,变量值D:\hadoop-common-2.7.3-bin-master,并在Path追加%HADOOP_HOME%\bin,有可能出现如下错误: org.apache.hadoop.io.nativeio.NativeIO$Windows....
在大数据处理领域,Hadoop是一个不可或缺的开源框架,它提供了分布式存储和计算的能力。本文将详细探讨与"Hadoop.dll"和"winutils.exe"相关的知识点,以及它们在Hadoop-2.7.1版本中的作用。 Hadoop.dll是Hadoop在...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分布式存储。Hadoop2.6.0是这个框架的一个重要版本,它包含了多项优化和改进,以提高系统的稳定性和性能。在这个压缩包中,我们关注的是与Windows...
在Hadoop生态系统中,`winutils.exe`和`hadoop.dll`是Windows环境下运行Hadoop必备的组件,尤其对于开发和测试环境来说至关重要。这里我们深入探讨这两个组件以及与Eclipse插件的相关性。 首先,`winutils.exe`是...
Hadoop是一个开源的分布式计算框架,由Apache基金会开发,它主要设计用于处理和存储大量数据。在提供的信息中,我们关注的是"Hadoop的dll文件",这是一个动态链接库(DLL)文件,通常在Windows操作系统中使用,用于...
Hadoop源码分析是深入理解Hadoop分布式计算平台原理的起点,通过源码分析,可以更好地掌握Hadoop的工作机制、关键组件的实现方式和内部通信流程。Hadoop项目包括了多个子项目,其中最核心的是HDFS和MapReduce,这两...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分析。这个压缩包文件包含的是"Hadoop.dll"和"winutils.exe"两个关键组件,它们对于在Windows环境下配置和运行Hadoop生态系统至关重要。 首先,...
Hadoop是Apache软件基金会开发的一个开源分布式计算框架,它的核心设计是处理和存储大量数据的能力。这个名为"Hadoop3.1.3.rar"的压缩包文件包含了Hadoop 3.1.3版本的所有组件和相关文件,使得用户可以下载并进行...