8.2 JFrame类
JFrame类是使用JRootPane并且实现了RootPaneContainer接口的Swing高层容器。另外,他使用WindowConstants接口来帮助管理相关操作。
8.2.1 创建JFrame
JFrame类提供了两个基本构造函数:一个用于不带标题的框架,而另一个用来创建带标题的框架。还有另外两个构造函数使用特定的GraphicsConfiguration来创建框架。
public JFrame()
JFrame frame = new JFrame();
public JFrame(String title)
JFrame frame = new JFrame("Title Bar");
public JFrame(GraphicsConfiguration config)
GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice gsd[] = ge.getScreenDevices();
GraphicsConfiguration gc[] = gsd[0].getConfigurations();
JFrame frame = new JFrame(gc[0]);
public JFrame(String title, GraphicsConfiguration config)
GraphicsConfiguration gc = ...;
JFrame frame = new JFrame("Title Bar", gc);
8.2.2 JFrame属性
表8-5显示了JFrame的九个属性。
JFrame属性
属性名
|
数据类型
|
访问性
|
accessibleContext
|
AccessibleContext
|
只读
|
contentPane
|
Container
|
读写
|
defaultCloseOperation
|
int
|
读写
|
glassPane
|
Component
|
读写
|
iconImage
|
Image
|
只写
|
jMenuBar
|
JMenuBar
|
读写
|
layeredPane
|
JLayeredPane
|
读写
|
layout
|
LayoutManager
|
只写
|
rootPane
|
JRootPane
|
只读
|
尽管大多数的属性都是实现RootPaneContainer接口的结果,但是有两个特殊的属性:defaultCloseOperation以及layout。(我们首先在第2章看到了defaultCloseOperation。)默认情况下,当用户关闭容器时,JFrame会隐藏自己。要修改这种设置,当设置默认关闭行为时我们可以表8-6中所列表出的常量来作为参数。第一个直接来自于JFrame;其他的则是WindowConstants接口的一部分。
aFrame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
关闭操作常量
常量
|
描述
|
EXIT_ON_CLOSE
|
调用System.exit(0)
|
DISPOSE_ON_CLOSE
|
在窗体上调用dispose()
|
ON_NOTHING_ON_CLOSE
|
忽略请求
|
HIDE_ON_CLOSE
|
在窗体上调用setVisible(false);这是默认行为
|
layout属性是比较奇特的。默认情况下,设置JFrame的布局管理器会将调用传递给内容面板。我们不可以修改JFrame的默认布局管理器。
JFrame还有另外一个静态属性:defaultLookAndFeelDecorated。这个属性与JRootPane的windowDecorationStyle属性结合使用。当设置为true时,新创建的窗体会使用观感中的装饰而不是窗口管理中的装饰进行装饰。当然,只有当前的观感支持窗口装饰时才会发生这种情况。列表8-2显示了另一种创建与图8-2相同的屏幕的方法(通过使用Metal观感所提供的窗口装饰)。
package swingstudy.ch08;
import java.awt.EventQueue;
import javax.swing.JFrame;
public class AdornSample2 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Runnable runner = new Runnable() {
public void run() {
JFrame.setDefaultLookAndFeelDecorated(true);
JFrame frame = new JFrame("Adornment Sample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(300,200);
frame.setVisible(true);
}
};
EventQueue.invokeLater(runner);
}
}
8.2.3 向JFrame添加组件
因为JFrame实现了RootPaneContainer接口并且使用JRootPane,我们不能直接向JFrame添加组件。相反,我们将组件添加到JFrame所包含的JRootPane。在J2SE 5.0之前,我们需要使用下面的方法来添加组件:
JRootPane rootPane = aJFrame.getRootPane();
Container contentPane = rootPane.getContentPane();
contentPane.add(...);
这可以用下面的语句进行简化:
aJFrame.getContentPane().add(...);
如果我们尝试直接向JFrame添加组件,则会抛出运行时错误。
由于许多建议(或是抱怨?),Sun最终决定将add()方法修改为代理:
使用J2SE 5.0时,当我们向JFrame添加组件时,他们实际上被添加到了RootPaneContainer的内容面板。
8.2.4 处理JFrame事件
JFrame类支持11种不同的监听器的注册:
- ComponentListener:确定窗体何时移动或修改尺寸
- ContainerListener:通常并不添加到JFrame,因为我们将组件添加到其JRootPane的内容面板。
- FocusListener:确定窗体何时获得或是失去输入焦点。
- HierarchyBoundsListener:确定窗体何时移动或是修改尺寸。其作用与ComponentListener类似,因为窗体是组件的顶层容器。
- HierarchyListener:确定窗体何时显示或隐藏。
- InputMethodListener:用于国际化时与输入法结合使用。
- KeyListener:通常并不添加到JFrame。相反,我们为其内容面板注册一个键盘动作,如下所示:
JPanel content = (JPanel)frame.getContentPane();
KeyStroke stroke = KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0);
content.registerKeyboardAction(actionListener, stroke,
JComponent.WHEN_IN_FOCUSED_WINDOW);
- MouseListener与MouseMotionListener:用于监听鼠标以及鼠标动作事件。
- PropertyChangeListener:用来监听绑定属性的改变。
- WindowListener:来确定窗口何时被图标化或是取消图标化或是用户正在尝试打开或关闭窗口。
通过defaultCloseOperation属性,我们通常并不需要添加WindowListener来帮助处理关闭窗体或是停止程序。
8.2.5 扩展JFrame
如果我们需要扩展JFrame,这个类有两个重要的protected方法:
protected void frameInit()
protected JRootPane createRootPane()
通过在子类中重写这些方法,我们可以自定义初始外观以及窗体或是其JRootPane的行为。例如,在列表8-3中所示的ExitableJFrame类的例子中,默认的关闭操作被初始化EXIT_ON_CLOSE状态。无需要为每一个创建的窗体调用setDefaultCloseOperation()方法,我们可以使用这个类进行替换。因为JFrame被继承,我们并不需要在其构造函数中添加frameInit()方法的调用。其父类自动调用这个方法。
package swingstudy.ch08;
import javax.swing.JFrame;
public class ExitableFrame extends JFrame {
public ExitableFrame() {
}
public ExitableFrame(String title) {
super(title);
}
protected void frameInit() {
super.frameInit();
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
}
注意:如果我们重写JFrame的frameInit()方法,记住首先调用super.frameInit()来初始化其默认行为。如果我们忘记了并没有自己重新实现所有的默认行为,我们的新窗体的外观与行为就会不同。
分享到:
相关推荐
JOptionPane.showMessageDialog(rootPane, message); } }); c.add(button); this.setSize(300, 200); this.show(); } } ``` 这个代码将创建一个弹出窗口,包含一个按钮,点击按钮时将显示一个弹出窗口,内容...
内容概要:本文探讨了高比例可再生能源接入对电力系统调峰能力的影响,提出了一种基于净负荷波动的调峰成本量化与分摊模型。首先,通过将负荷和可再生能源出力曲线转换为无波动的均值线,构建了无调峰需求的替代场景。接着,建立了含深度调峰和抽水蓄能的调度优化模型,用于计算不同场景下的调峰成本。通过比较有无调峰需求两种场景下的系统调峰成本,确定了单一主体导致的边际调峰成本,并采用Shapley值方法合理分摊调峰成本。研究表明,该模型可以有效反映各主体的调峰成本或贡献,有助于促进可再生能源的消纳和电力系统的稳定运行。 适合人群:从事电力系统规划、运营管理和可再生能源研究的专业人士,以及关注能源政策和技术发展的研究人员。 使用场景及目标:适用于评估和优化高比例可再生能源接入条件下的电力系统调峰成本,旨在提高电力系统的灵活性和经济性,同时促进可再生能源的有效利用。 其他说明:该模型需要根据实际情况进行调整和优化,以适应不同地区的电力市场特点和技术水平。
内容概要:本文详细介绍了如何使用博图V16进行ABB机器人的外部启动及其与西门子设备的Profinet通讯配置。首先概述了ABB机器人和博图V16的基本概念,接着深入讲解了外部启动的重要性和实现方式,重点介绍了FB功能块的应用,以及Profinet通讯的具体配置步骤。文中还强调了GSD文件的作用,用于描述机器人的属性和行为,最后讨论了硬件配置的要求和注意事项,特别是对dsqc1030或dsqc652板卡的支持和888-2或888-3选项的需求。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些负责机器人集成和编程的专业人士。 使用场景及目标:适用于需要将ABB机器人与西门子设备通过Profinet网络进行通讯并实现外部启动的项目。目标是提高自动化生产线的灵活性和效率,确保机器人和PLC之间的无缝协作。 其他说明:本文不仅提供了理论指导,还包含了实际操作中的关键细节,有助于读者快速掌握相关技能并在实践中应用。
scratch少儿编程逻辑思维游戏源码-3D环境.zip
少儿编程scratch项目源代码文件案例素材-泼溅猫.zip
内容概要:本文介绍了基于EMD-ARMA的组合风光出力预测方法,详细阐述了经验模态分解(EMD)和自回归移动平均(ARMA)模型的应用步骤。首先,通过EMD将原始发电数据分解为多个本征模态函数(IMF),然后用ARMA模型对各IMF分量进行建模和预测,最后将预测结果叠加重构,获得最终的风光功率预测值。文中还提供了简化的Python代码示例,帮助读者理解和实现该方法。 适合人群:从事新能源研究和技术开发的专业人士,尤其是对风光发电预测感兴趣的科研人员和工程师。 使用场景及目标:适用于需要提高风光发电预测精度的项目,旨在通过先进的数学模型优化电力调度和资源配置。 其他说明:本文提供的代码示例仅用于教学目的,实际应用中需根据具体情况调整和完善。此外,建议在实践中参考更多专业文献和寻求专家意见以确保预测模型的准确性和可靠性。
scratch少儿编程逻辑思维游戏源码-scratch RPG 战斗.zip
scratch少儿编程逻辑思维游戏源码-窗户冒险.zip
scratch少儿编程逻辑思维游戏源码-FC经典游戏 沙罗曼蛇.zip
少儿编程scratch项目源代码文件案例素材-跑酷版《我的世界》.zip
scratch少儿编程逻辑思维游戏源码-抜刀.zip
内容概要:本文介绍了永磁同步电机(PMSM)无位置传感器控制的一种创新方法,重点探讨了通过反电动势估计和扰动观测器增益设计来实现转子位置的精确估算。该方法避免了传统的PLL等位置观测器,仅需一次反正切计算即可获得转子位置,极大简化了系统复杂度。此外,模型控制器采用离散域设计,便于参数调整和适应不同电机参数。文中还提供了具体的Python代码示例,展示了从初始化电机参数到主循环控制的具体实现步骤。 适合人群:从事电机控制系统设计的研究人员和技术工程师,尤其是关注永磁同步电机无传感器控制领域的专业人士。 使用场景及目标:适用于需要简化调试流程、提高系统灵活性和适应多种电机参数的应用场景。主要目标是在保持高性能的同时降低硬件成本和系统复杂性。 其他说明:该方法不仅简化了调试过程,还提高了系统的鲁棒性和可靠性,特别适合于工业自动化、机器人技术和电动汽车等领域。
内容概要:本文深入探讨了乘用车双腔制动主缸的精细化建模及其在Simulink和Amesim中的联合仿真验证。文章首先介绍了双腔制动主缸的物理结构和动力学方程,特别是考虑了液压特性和机械传动的耦合关系。接着,作者详细描述了如何在Simulink中实现这些模型,并通过S函数处理变步长积分问题,确保仿真精度。此外,还讨论了联合仿真过程中遇到的数据交换频率问题,并提出了使用二阶保持器来补偿相位滞后的解决方案。最终,通过对不同推杆力输入条件下的仿真结果对比,验证了精细化模型的有效性和稳定性。 适合人群:从事汽车制动系统研究的技术人员、高校相关专业师生、对车辆动力学仿真感兴趣的工程师。 使用场景及目标:①帮助研究人员更好地理解和掌握双腔制动主缸的工作原理;②为后续更复杂的整车制动系统仿真提供可靠的子系统模型;③提高仿真精度,减少因模型简化带来的误差。 其他说明:文中提供了详细的建模步骤、公式推导、代码实现以及仿真结果对比,附带完整视频教程和参考资料,便于初学者学习。同时强调了实际应用中需要注意的关键细节,如流量计算、数据交换频率调整等。
scratch少儿编程逻辑思维游戏源码-Scratch版Windows11.zip
少儿编程scratch项目源代码文件案例素材-青蛙.zip
内容概要:本文详细介绍了光伏交直流混合微电网在离网(孤岛)模式下的双下垂控制仿真模型。该模型利用Matlab/Simulink工具进行构建和仿真,涵盖了直流微电网、交流微电网以及互联变换器(ILC)的结构和控制策略。直流微电网采用电压电流双闭环下垂控制,交流微电网则通过恒压控制和下垂控制来维持稳定的频率和电压。ILC采用双下垂控制策略,通过归一化处理和偏差调整,使得交流母线频率和直流母线电压趋于一致。此外,模型还包括采样保持、坐标变换、功率滤波、SVPWM等辅助环节,以确保系统的稳定运行和高效能量管理。实验结果显示,在负载突增的情况下,系统依然能够保持良好的波形质量和稳定性。 适合人群:对微电网控制系统感兴趣的科研人员、电力工程技术人员及高校师生。 使用场景及目标:适用于研究和验证光伏交直流混合微电网在离网模式下的控制策略,特别是双下垂控制的应用效果。目标是提升微电网的稳定性和能量管理效率。 其他说明:仿真环境为Matlab2020b及以上版本,部分模块仅支持高版本软件。对于希望深入了解双下垂控制机制的研究者,可以通过进一步的学习和交流获得更多信息。
内容概要:本文详细介绍了基于扩展卡尔曼滤波器(EKF)的INS(惯性测量单元)和GPS(全球定位系统)松组合导航技术。首先解释了为何需要松组合导航,即通过融合INS和GPS的优势,提高定位的稳定性和准确性。接着阐述了15状态下的EKF融合方法,涵盖速度、姿态、位置等多个系统动态参数的估计与更新。然后讨论了NED(北东地)坐标系的应用及其带来的直观物理意义。最后提供了简化的Python代码片段,演示了如何在EKF中融合INS和GPS数据,以获得连续、稳定的导航结果。 适合人群:从事导航技术研发的专业人士,尤其是对EKF、INS、GPS以及多传感器数据融合感兴趣的工程师和技术研究人员。 使用场景及目标:适用于需要高精度、高可靠性定位系统的应用场景,如自动驾驶汽车、无人机飞行控制系统等。目标是通过融合INS和GPS数据,克服单一传感器的局限性,提升整个导航系统的性能。 其他说明:文中提供的代码仅为概念验证性质,实际工程应用中还需考虑更多复杂的因素和优化措施。
内容概要:本文详细介绍了基于MATLAB Simulink平台的三相逆变器稳压控制仿真模型,重点探讨了孤岛运行环境下的电压电流双闭环控制策略及其LCL滤波电路的应用。首先,通过对主电路电流电压的采样并进行Park和Clark变换,将数据转换为dq坐标系下的电流电压值,然后输入双闭环控制系统进行精确调节。接着,通过反变换回到abc坐标系,并利用PWM调制对逆变器进行控制,最终实现了电压电流的稳定输出。文中还提供了简化的Matlab代码片段,展示了关键步骤的具体实现方法。此外,作者通过多次仿真实验验证了该控制策略的有效性和鲁棒性。 适合人群:从事电力电子、自动化控制领域的研究人员和技术人员,尤其是对逆变器控制策略感兴趣的读者。 使用场景及目标:适用于需要深入了解三相逆变器在孤岛运行环境下的稳压控制机制的研究人员和技术人员。目标是掌握电压电流双闭环控制策略以及LCL滤波电路的设计与应用,提高逆变器系统的稳定性和可靠性。 其他说明:本文不仅提供了理论分析,还包括具体的仿真模型和代码示例,有助于读者更好地理解和实践相关技术。
少儿编程scratch项目源代码文件案例素材-七龙珠RPG 测试.zip
scratch少儿编程逻辑思维游戏源码-城市世界.zip