可有的时候会出现一种悲催的情况,你刚把1W块钱打卡上,你爸取完1W后,卡里剩余 :原有2W -取了1W,剩余1W,这样3W块钱就变成:卡内剩余1W+你爸手上的1W现金 = 2W了,3W块变2W了,是不是很悲催啊。当然了,银行肯定不会出现这种情况,这只是为了说明当多个人操作同一份数据的时候,会造成的意想不到的后果,而在java中,为了避免这种荒唐的情况,就使用加锁对对象操作进行锁定。
1、锁的原理
Java中每个对象都有一个内置锁
当程序运行到非静态的synchronized同步方法上时,自动获得与正在执行代码类的当前实例(this实例)有关的锁。获得一个对象的锁也称为获取锁、锁定对象、在对象上锁定或在对象上同步。
当程序运行到synchronized同步方法或代码块时才该对象锁才起作用。
一个对象只有一个锁。所以,如果一个线程获得该锁,就没有其他线程可以获得锁,直到第一个线程释放(或返回)锁。这也意味着任何其他线程都不能进入该对象上的synchronized方法或代码块,直到该锁被释放。
释放锁是指持锁线程退出了synchronized同步方法或代码块。
关于锁和同步,有以下几个要点:
1)、只能同步方法,而不能同步变量和类;
2)、每个对象只有一个锁;当提到同步时,应该清楚在什么上同步?也就是说,在哪个对象上同步?
3)、不必同步类中所有的方法,类可以同时拥有同步和非同步方法。
4)、如果两个线程要执行一个类中的synchronized方法,并且两个线程使用相同的实例来调用方法,那么一次只能有一个线程能够执行方法,另一个需要等待,直到锁被释放。也就是说:如果一个线程在对象上获得一个锁,就没有任何其他线程可以进入(该对象的)类中的任何一个同步方法。
5)、如果线程拥有同步和非同步方法,则非同步方法可以被多个线程自由访问而不受锁的限制。
6)、线程睡眠时,它所持的任何锁都不会释放。
7)、线程可以获得多个锁。比如,在一个对象的同步方法里面调用另外一个对象的同步方法,则获取了两个对象的同步锁。
8)、同步损害并发性,应该尽可能缩小同步范围。同步不但可以同步整个方法,还可以同步方法中一部分代码块。
9)、在使用同步代码块时候,应该指定在哪个对象上同步,也就是说要获取哪个对象的锁。例如:
public int fix(int y) {
synchronized (this) {
x = x - y;
}
return x;
}
当然,同步方法也可以改写为非同步方法,但功能完全一样的,例如:
public synchronized int getX() {
return x++;
}
与
public int getX() {
synchronized (this) {
return x;
}
}
效果是完全一样的。
三、静态方法同步
要同步静态方法,需要一个用于整个类对象的锁,这个对象是就是这个类(XXX.class)。
例如:
public static synchronized int setName(String name){
Xxx.name = name;
}
等价于
public static int setName(String name){
synchronized(Xxx.class){
Xxx.name = name;
}
}
四、如果线程不能不能获得锁会怎么样
如果线程试图进入同步方法,而其锁已经被占用,则线程在该对象上被阻塞。实质上,线程进入该对象的的一种池中,必须在哪里等待,直到其锁被释放,该线程再次变为可运行或运行为止。
当考虑阻塞时,一定要注意哪个对象正被用于锁定:
1、调用同一个对象中非静态同步方法的线程将彼此阻塞。如果是不同对象,则每个线程有自己的对象的锁,线程间彼此互不干预。
2、调用同一个类中的静态同步方法的线程将彼此阻塞,它们都是锁定在相同的Class对象上。
3、静态同步方法和非静态同步方法将永远不会彼此阻塞,因为静态方法锁定在Class对象上,非静态方法锁定在该类的对象上。
4、对于同步代码块,要看清楚什么对象已经用于锁定(synchronized后面括号的内容)。在同一个对象上进行同步的线程将彼此阻塞,在不同对象上锁定的线程将永远不会彼此阻塞。
五、何时需要同步
在多个线程同时访问互斥(可交换)数据时,应该同步以保护数据,确保两个线程不会同时修改更改它。
对于非静态字段中可更改的数据,通常使用非静态方法访问。
对于静态字段中可更改的数据,通常使用静态方法访问。
如果需要在非静态方法中使用静态字段,或者在静态字段中调用非静态方法,问题将变得非常复杂。
六、线程安全类
当一个类已经很好的同步以保护它的数据时,这个类就称为“线程安全的”。
即使是线程安全类,也应该特别小心,因为操作的线程期间仍然不一定安全。
举个形象的例子,比如一个集合是线程安全的,有两个线程在操作同一个集合对象,当第一个线程查询集合非空后,删除集合中所有元素的时候。第二个线程也来执行与第一个线程相同的操作,也许在第一个线程查询后,第二个线程也查询出集合非空,但是当第一个执行清除后,第二个再执行删除显然是不对的,因为此时集合已经为空了。
看个代码:
publicclassNameList {
privateList nameList = Collections.synchronizedList(newLinkedList());
publicvoidadd(String name) {
nameList.add(name);
}
publicString removeFirst() {
if(nameList.size() > 0) {
return(String) nameList.remove(0);
}else{
returnnull;
}
}
}
publicclassTest {
publicstaticvoidmain(String[] args) {
finalNameList nl =newNameList();
nl.add("aaa");
classNameDropperextendsThread{
publicvoidrun(){
String name = nl.removeFirst();
System.out.println(name);
}
}
Thread t1 =newNameDropper();
Thread t2 =newNameDropper();
t1.start();
t2.start();
}
}
虽然集合对象
private List nameList = Collections.synchronizedList(new LinkedList());
是同步的,但是程序还不是线程安全的。
出现这种事件的原因是,上例中一个线程操作列表过程中无法阻止另外一个线程对列表的其他操作。
解决上面问题的办法是,在操作集合对象的NameList上面做一个同步。改写后的代码如下:
publicclassNameList {
privateList nameList = Collections.synchronizedList(newLinkedList());
publicsynchronizedvoidadd(String name) {
nameList.add(name);
}
publicsynchronizedString removeFirst() {
if(nameList.size() > 0) {
return(String) nameList.remove(0);
}else{
returnnull;
}
}
}
这样,当一个线程访问其中一个同步方法时,其他线程只有等待。
七、线程死锁
死锁对Java程序来说,是很复杂的,也很难发现问题。当两个线程被阻塞,每个线程在等待另一个线程时就发生死锁。
还是看一个比较直观的死锁例子:
publicclassDeadlockRisk {
privatestaticclassResource {
publicintvalue;
}
privateResource resourceA =newResource();
privateResource resourceB =newResource();
publicintread() {
synchronized(resourceA) {
synchronized(resourceB) {
returnresourceB.value + resourceA.value;
}
}
}
publicvoidwrite(inta,intb) {
synchronized(resourceB) {
synchronized(resourceA) {
resourceA.value = a;
resourceB.value = b;
}
}
}
}
假设read()方法由一个线程启动,write()方法由另外一个线程启动。读线程将拥有resourceA锁,写线程将拥有resourceB锁,两者都坚持等待的话就出现死锁。
实际上,上面这个例子发生死锁的概率很小。因为在代码内的某个点,CPU必须从读线程切换到写线程,所以,死锁基本上不能发生。
但是,无论代码中发生死锁的概率有多小,一旦发生死锁,程序就死掉。有一些设计方法能帮助避免死锁,包括始终按照预定义的顺序获取锁这一策略。已经超出SCJP的考试范围。
八、线程同步小结
1、线程同步的目的是为了保护多个线程反问一个资源时对资源的破坏。
2、线程同步方法是通过锁来实现,每个对象都有切仅有一个锁,这个锁与一个特定的对象关联,线程一旦获取了对象锁,其他访问该对象的线程就无法再访问该对象的其他同步方法。
3、对于静态同步方法,锁是针对这个类的,锁对象是该类的Class对象。静态和非静态方法的锁互不干预。一个线程获得锁,当在一个同步方法中访问另外对象上的同步方法时,会获取这两个对象锁。
4、对于同步,要时刻清醒在哪个对象上同步,这是关键。
5、编写线程安全的类,需要时刻注意对多个线程竞争访问资源的逻辑和安全做出正确的判断,对“原子”操作做出分析,并保证原子操作期间别的线程无法访问竞争资源。
6、当多个线程等待一个对象锁时,没有获取到锁的线程将发生阻塞。
7、死锁是线程间相互等待锁锁造成的,在实际中发生的概率非常的小。真让你写个死锁程序,不一定好使,呵呵。但是,一旦程序发生死锁,程序将死掉。
相关推荐
线程同步是 Java 编程中的一种机制,用于控制多个线程之间的资源访问顺序,以避免线程之间的冲突和数据不一致。线程同步的目的就是避免线程“同步”执行,即让多个线程之间排队操作共享资源。 关于线程同步,需要...
在 Java 中,还有其他一些锁机制,例如 Semaphore、CountDownLatch 和 CyclicBarrier 等,它们都可以用来实现线程同步和线程安全。 Java 中的多线程编程需要充分考虑线程安全和锁机制的问题,否则可能会导致程序的...
总结一下,Java线程同步的关键点: 1. **线程同步是为了解决共享资源的并发访问问题,防止数据不一致和冲突。** 2. **同步意味着线程排队,依次访问共享资源,而不是同时访问。** 3. **只有共享变量(可变状态)才...
java线程同步java线程同步java线程同步
Java线程(二):线程同步synchronized和volatile 详细讲解Java 同步的原理技术资料
Java线程同步调用是多线程编程中的基石,它通过同步方法和同步代码块两种方式,有效地控制了线程之间的交互,防止了多线程环境下常见的并发问题。无论是对于初学者还是有经验的开发者,掌握和熟练应用这些同步机制都...
Java多线程同步是指在Java语言中,如何使用synchronized关键字和其他同步机制来确保多线程程序的正确执行。在Java语言中,synchronized关键字用于对方法或者代码块进行同步,但是仅仅使用synchronized关键字还不能...
Java线程同步与通信是多线程编程中的关键概念,用于解决并发访问共享资源时可能出现的数据不一致性和竞态条件问题。以下将详细介绍这两个主题,以及如何通过代码示例进行演示。 1. **线程同步**: 线程同步是确保...
它可能包含了创建和管理线程、与数据库交互的代码,以及各种同步和异常处理逻辑。为了进一步学习和实践,你可以查看并分析这个代码,了解具体实现细节。 总之,使用Java线程实现数据库主从同步更新是一种常见且实用...
在“操作系统实验 多线程同步与互斥 java编写 有界面”的实验中,可能需要设计一个图形用户界面(GUI),通过按钮或事件触发线程的创建和同步操作,直观地展示线程间的交互和同步效果。例如,可以模拟银行账户转账,...
java多线程同步互斥访问实例,对于初学者或是温故而知新的同道中人都是一个很好的学习资料
基于Java并发编程的多线程同步与锁机制 项目简介 本项目旨在深入探讨Java并发编程中的多线程同步与锁机制,涵盖了从基础的线程创建、同步方法到高级的并发工具类如ReentrantLock、ReadWriteLock、Atomic类等的...
电子书相关:包含4个有关JAVA线程的电子书(几乎涵盖全部有关线程的书籍) OReilly.Java.Threads.3rd.Edition.Sep.2004.eBook-DDU Java Thread Programming (Sams) java线程第二版中英文 java线程第二版中英文 ...
在Java编程中,线程同步和互斥是多线程编程中的重要概念,它们用于解决多个线程同时访问共享资源时可能出现的问题。本项目通过一个生产者消费者问题的实例,展示了如何在Java中实现线程间的同步与互斥。 生产者消费...
Java多线程与锁是Java并发编程中的核心概念,它们对于构建...总之,理解并熟练掌握Java多线程和锁机制对于编写高效、健壮的并发代码至关重要。通过实践和案例学习,可以更好地理解这些概念,并能在实际项目中灵活运用。
Java多线程同步是编程中一个非常重要的概念,特别是在并发编程和高并发系统设计中起到关键作用。在Java中,为了保证线程安全,避免数据竞争和不一致的状态,我们通常会使用同步机制来控制对共享资源的访问。本文将...
总结来说,Java线程同步是通过监视器机制实现的,包括互斥和协作两种方式。互斥确保了同一时间只有一个线程访问共享数据,而协作则允许线程通过`wait()`和`notify()`方法进行通信和协调,以完成特定的任务。理解并...
Java多线程与锁是Java并发编程中的核心概念,它们...综上所述,Java多线程和锁是解决并发问题的关键,它们涉及线程创建、管理、同步和通信等多个方面。通过深入学习和实践,开发者能够构建出更加稳定、高效的并发程序。