ThreadPoolExecutor
线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
corePoolSize: 线程池维护线程的最少数量
maximumPoolSize:线程池维护线程的最大数量
keepAliveTime: 线程池维护线程所允许的空闲时间
unit: 线程池维护线程所允许的空闲时间的单位
workQueue: 线程池所使用的缓冲队列
handler: 线程池对拒绝任务的处理策略
一个任务通过 execute(Runnable)方法被添加到线程池,任务就是一个 Runnable类型的对象,任务的执行方法就是 Runnable类型对象的run()方法。
当一个任务通过execute(Runnable)方法欲添加到线程池时:
l 如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
2 如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
3 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。
4 如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。
5 当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。
unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性:
NANOSECONDS、MICROSECONDS、MILLISECONDS、SECONDS。
workQueue常用的是:java.util.concurrent.ArrayBlockingQueue
handler有四个选择:
ThreadPoolExecutor.AbortPolicy()
抛出java.util.concurrent.RejectedExecutionException异常
ThreadPoolExecutor.CallerRunsPolicy()
重试添加当前的任务,他会自动重复调用execute()方法
ThreadPoolExecutor.DiscardOldestPolicy()
抛弃旧的任务
ThreadPoolExecutor.DiscardPolicy()
抛弃当前的任务
二、相关参考
一个 ExecutorService,它使用可能的几个池线程之一执行每个提交的任务,通常使用 Executors 工厂方法配置。
线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行集合任务时使用的线程)的方法。每个 ThreadPoolExecutor 还维护着一些基本的统计数据,如完成的任务数。
为了便于跨大量上下文使用,此类提供了很多可调整的参数和扩展挂钩。但是,强烈建议程序员使用较为方便的 Executors 工厂方法Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)和Executors.newSingleThreadExecutor()(单个后台线程),它们均为大多数使用场景预定义了设置。否则,在手动配置和调整此类时,使用以下指导:
核心和最大池大小
ThreadPoolExecutor 将根据 corePoolSize(参见 getCorePoolSize())和 maximumPoolSize(参见 getMaximumPoolSize())设置的边界自动调整池大小。当新任务在方法execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。
按需构造
默认情况下,即使核心线程最初只是在新任务需要时才创建和启动的,也可以使用方法 prestartCoreThread() 或 prestartAllCoreThreads() 对其进行动态重写。
创建新线程
使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用 Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的NORM_PRIORITY 优先级和非守护进程状态。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。如果从 newThread 返回null 时 ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。
保持活动时间
如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止(参见 getKeepAliveTime(java.util.concurrent.TimeUnit))。这提供了当池处于非活动状态时减少资源消耗的方法。如果池后来变得更为活动,则可以创建新的线程。也可以使用方法 setKeepAliveTime(long, java.util.concurrent.TimeUnit) 动态地更改此参数。使用 Long.MAX_VALUE TimeUnit.NANOSECONDS 的值在关闭前有效地从以前的终止状态禁用空闲线程。
排队
所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
A. 如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。
B. 如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。
C. 如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
排队有三种通用策略:
直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集合时出现锁定。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙的情况下将新任务加入队列。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。
被拒绝的任务
当 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法 execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute 方法都将调用其 RejectedExecutionHandler 的 RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:
A. 在默认的 ThreadPoolExecutor.AbortPolicy 中,处理程序遭到拒绝将抛出运行时 RejectedExecutionException。
B. 在 ThreadPoolExecutor.CallerRunsPolicy 中,线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。
C. 在 ThreadPoolExecutor.DiscardPolicy 中,不能执行的任务将被删除。
D. 在 ThreadPoolExecutor.DiscardOldestPolicy 中,如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。
定义和使用其他种类的 RejectedExecutionHandler 类也是可能的,但这样做需要非常小心,尤其是当策略仅用于特定容量或排队策略时。
挂钩方法
此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable) 和 afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。
如果挂钩或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。
队列维护
方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable) 和 purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。
分享到:
相关推荐
android线程池管理工具类,用来管理线程的一些操作,避免重复new线程造成的资源浪费
通过以上代码示例和注意事项,你可以更好地理解和应用Android中的线程池管理,提高应用的并发处理能力和响应速度。在实际项目中,结合具体业务需求,灵活运用ThreadPoolExecutor和ScheduledExecutorService,将有助...
`android线程池`是Android应用中进行多线程操作的重要工具,它可以帮助我们更有效地管理并发任务,提高系统效率。`ThreadPoolDemo`这个示例为我们提供了一个起点,通过学习和实践,我们可以进一步优化线程池的配置,...
在Android开发中,高效地管理线程和任务执行是至关重要的,这关乎到应用的性能、响应速度以及用户体验。线程池和任务队列是实现这一目标的关键工具。本文将深入探讨Android中线程池与任务队列的概念、工作原理以及...
总结来说,这个"android线程池案例"是学习如何在Android环境中优化线程管理,提高应用性能的好材料。它涉及到的关键知识点包括线程池的配置、任务调度、进度反馈以及UI更新,这些都是Android开发者必备的技能。通过...
通过合理配置线程池的参数(如核心线程数、最大线程数、存活时间等),可以更好地管理并发任务,防止过多线程导致系统负载过高。 二、Handler Handler是Android消息机制的核心组件,它允许开发者在后台线程和主线...
在描述中提到的"很经典的一个线程池应用"可能指的是一个开源库,如Android的`AsyncTask`或者更先进的`OkHttp`的调度器,它们都提供了线程池管理的实现。这些框架通常会根据任务类型和系统资源智能地调整线程数量,以...
总结,这个"Java/Android线程池演示Demo"旨在通过实例展示如何在Android和Java项目中使用线程池进行并发处理,帮助开发者理解线程池的工作原理和优势,以及如何根据应用需求配置和管理线程池。通过分析和实践这个...
在Android应用开发中,线程池的使用是提高性能和优化资源管理的重要手段。线程池允许我们预先创建一定数量的线程,处理并发任务,而不是每次需要时都创建新线程,这样可以减少系统资源的消耗,提高响应速度。本示例...
在Android开发中,`ExecutorService`是Java并发编程的一个重要组件,它被广泛应用于线程管理,特别是处理大量异步任务时。`ExecutorService`是`java.util.concurrent`包下的接口,它提供了一种优雅的方式来管理和...
在Android开发中,线程池是一种管理线程资源的有效方式,它可以提高应用程序的性能和响应速度,尤其是在处理大量并发任务时。线程池通过复用已存在的线程而不是每次需要时都创建新线程,降低了系统资源的消耗,提高...
在Android开发中,线程池是一种管理线程的机制,它可以帮助我们更高效地调度并发任务,优化系统资源的使用,防止过多线程导致的系统性能下降或崩溃。本篇文章将深入探讨四种主要的线程池类型及其实现,旨在帮助...
综合以上,这个项目可能是一个实现Android应用与服务器通信的示例,利用线程池优化后台任务执行,采用单例模式管理网络请求,并通过WebService接口进行数据交换。理解并熟练掌握这些技术,对于提升Android开发能力...
在Android开发中,高效地管理线程和资源是优化应用性能的关键。本篇文章将探讨四个核心概念:线程池、信号量、Looper以及缓存,它们在构建高性能、响应迅速的Android应用程序中扮演着重要角色。 首先,让我们来了解...
通过这个"android线程池项目",你可以亲自实践如何在Android中创建线程池,提交任务,以及观察其运行效果。通过代码分析和调试,你将深入理解线程池的工作机制,提升你的Android开发技能。记得在实践中不断思考和...
2. **ExecutorService**:在Android中,我们可以使用`java.util.concurrent.ExecutorService`接口来创建和管理线程池。`ExecutorService`提供了调度和执行任务的能力,包括控制并发级别、处理线程异常等。 3. **...
在Android开发中,高效地管理线程是提升应用程序性能的关键因素之一。Kotlin作为一种现代、简洁的编程语言,被广泛应用于Android开发,为开发者提供了更便捷的语法和强大的功能。"Android-AppExecutor应用线程池可以...
本资料集主要探讨了如何使用线程池和缓存策略来实现高效的Android异步图像加载。以下是相关知识点的详细说明: 1. **异步加载**:在Android中,由于主线程负责UI更新,因此图像加载应当在后台线程执行,以避免阻塞...
Android线程池控制并发数多线程下载 Android多线程下载是指在Android应用程序中使用多个线程来执行下载任务,以提高下载速度和效率。然而,并发下载线程越多并不一定意味着下载速度越快,因为当用户开启太多的并发...
在Android应用开发中,图像加载是一项关键任务,尤其是在处理大量图片或者在滚动视图(如ListView、RecyclerView)中。为了保证用户体验,我们需要有效地异步加载图像,避免UI线程阻塞,同时考虑到性能优化,使用...