`
caiwb1990
  • 浏览: 319711 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

IOS学习笔记1 --oc简介,语法

阅读更多
学了段时间的IOS了, 把过去的学习笔记整理下把.

iOS 系统架构

  • Cocoa Touch
  • Multi-Touch
    Alerts
    Core Motion
    Web View
    View Hierarchy
    Map Kit
    Localization
    Image Picker
    Controls
    Camera
    

  • Media
  • Core Audio
    JPEG PNG TIFF
    OpenAL 
    PDF
    Audio Mixing 
    Quartz(2D)
    Audio Recording
    Core Animation
    Video Playback
    OpenGL ES
    

  • Core Services
  • Collections 
    Core Location
    Address Book
    Net Services
    networking 
    Threading
    File Access
    Preferences
    SQLite
    URL Utilities
    

  • Core OS
  • OSX kernel
    Power Management
    Mach 3.0
    Keychain Access
    BSD
    Certificates
    Sockets
    File System
    Security 
    Bonjou
    



    Objective-C简介


    本来自己整理了一些,然后看到有一篇写的超好,就搞过来了。原帖也找不到了,如果侵犯了原作者,请联系我。

    引用

    首先Objective-C是C的一个超集。

    其次Objective-C是一个面向对象的语言。

    #import = #include

    在头文件定义的都是公共的(方法 or 变量)

    在m文件里面定义的都是私有的(方法 or 变量)

    @property 这个后面的变量在声明的时候就一起声明了两个方法(getter setter)



    第一节 总括

    这一节是对Objective-C(以后简称ObjC)的简要介绍,目的是使读者对ObjC有一个概括的认识。

    ObjC简介:ObjC是以SmallTalk为基础,建立在C语言之上,是C语言的超集。20世纪80年代早期由 Brad J.Cox设计,2007年苹果公司发布了ObjC 2.0,并在iPhone上使用ObjC进行开发。

    ObjC学习内容:习的内容主要包括语法和Cocoa框架两部分。本文主要对语法进行介绍。

    IDE:编写ObjC程序最主要的编译环境是Xcode,它是苹果官方提供的IDE,官网中的SDK包括Xcode,可以通过下载SDK来获得它。但是Xcode只支持MacOS X,所以如果要在其它环境下编写ObjC程序,要使用其它IDE。Linux/FreeBSD用GNUStep,Windows NT5.x(2000,XP)要先安装cywin或mingw,然后安装GNUStep。同时仅仅通过文本编辑器,GCC的make工具也可以用于开发。 注:如果要使用到Cocoa的话,只能在Apple公司的Xcode上。

    框架: ObjC编程中主要用到的框架是Cocoa,它是MacOS X中五大API之一,它由两个不同的框架组成FoundationKit 和ApplicationKit。 Foundation框架拥有100多个类,其中有很多有用的、面向数据的低级类和数据类型,如NSString,NSArray, NSEnumerator和NSNumber。ApplicationKit包含了所有的用户接口对象和高级类。这些框架本文不做重点介绍,如果要深入了解可以去看Xcode自带的文档。

    特别之处:初次接触ObjC时,会发现许多和其它语言不同的地方,会看到很多的+,-,[ ,] ,@, NS等符号,这些符号在以后的编程中将经常看到,这部分内容在第二节中介绍。先熟悉一下ObjC的代码

    #import "ClassA.h"
    #import <stdio.h>
    
    int main( int argc, const char *argv[] ) {
    	ClassA *c1 = [[ClassA alloc] init];
        ClassA *c2 = [[ClassA alloc] init];
    
        //print count
        printf("ClassA count: %i\n", [ClassA initCount] );
    
        ClassA *c3 = [[ClassA alloc] init];
    
        //print count again
        printf("ClassA count: %i\n", [ClassA initCount] );
    
        [c1 release];
        [c2 release];
        [c3 release];
    
        return 0;
    }
    


    除了这些语言要素上的不同,ObjC也提供了一些很好的特性,如类别,扮演(Posing)等,这些在运行时的特性使得编程更加灵活。

    优缺点: 每一个语言都有其优缺点,ObjC也不例外,这就要求在选择语言时权衡利弊。对于ObjC,只要善于利用它的优点,你会发现它是一个简单,灵活,高效的语言。以下列举了它的一些特点:

    优点: 类别、扮演(Posing)、动态类型、指针计算、弹性信息传递、不是一个过度复杂的c衍生语言、可通过Objective-c++与c++结合

    缺点: 没有命名空间、没有操作符重载、不像c++那样复杂


    第二节对C的扩展

    1.扩展名

    ObjC是ANSI版本C的一个超集,它支持相同的C语言基本语法。与C一样,文件分为头文件和源文件,扩展名分别为.h和.m。如果要加入c++的语法,需要用到.mm,这里不做介绍。

    引用
    .h 头文件。头文件包涵类的定义、类型、方法以及常量的声明
        
    .m 源文件。这个典型的扩展名用来定义源文件,可以同时包含C和Objective-C的代码。


    2.#import

    在ObjC里,包含头文件有比#include更好的方法#import。它的使用和#include相同,并且可以保证你的程序只包含相同的头文件一次。相当于#include+ #pragma once的组合。 例如要包含Foundation框架中的Foundation.h文件,可以像下面这样。

    c #import<Foundation/Foundation.h>


    3.@符号

    @符号是ObjC在C基础上新加的特性之一。常见到的形式有@”字符串”,%@ , @interface,@implement等。@”字符串”表示引用的字符串应该作为Cocoa的NSString元素来处理。@interface等则是对于C的扩展,是ObjC面向对象特性的体现。 注:这里提一个小技巧,只要看到@符号,就可以认为它是对于C的一个扩展。

    4.NSLog()

    在ObjC中用的打印函数是NSLog(),因为ObjC是加了一点”特殊语料”的C语言,所以也可以用printf()但是NSLog()提供了一些特性,如时间戳,日期戳和自动加换行符等,用起来更方便,所以推荐使用NSLog()。下面是两种输出的对比。

    使用NSLog()输出任意对象的值时,都会使用%@格式说明。在使用这个说明符时,对象通过一个名为description的方法提供自己的NSLog()格式。


    5.BOOL

    BOOL是ObjC中的布尔类型,它和C中的bool有如下区别
    BOOL YES(1),NO(0)
         
    bool true(!0),false(0)


    6.id

    这是ObjC新加的一个数据类型,它是一般的对象类型,能够存储任何类型的方法。

    7.nil

    在ObjC中,相对于C中的NULL,用的是nil。这两者是等价的。下面是nil的定义。

    #define nil NULL


    第三节 创建对象

    1.接口和实现

    在ObjC中定义一个类需要有两个部分:接口和实现。接口文件包含了类的声明,定义了实例变量和方法。实现文件包含了具体的函数的实现代码。下图显示了一个叫MyClass的类,它继承自NSObject基类。类的定义总是从@interface开始到@end结束。在类名后面的是父类的名称。实例变量被定义在两个花括号之间。在实例变量下面的是方法的定义。一个分号用来结束一个变量或者方法。

    下面的代码显示了MyClass这个类的实现代码。就像类的定义规则一样,类实现文件也被两个标识框起来,一个是@implementation,还有一个是@end。这两个指令标识符告诉编译器程序从哪里开始编译到哪里结束。类中的方法名称的定义和它接口文件中的定义是一样的,除了实现文件中有具体的代码以外。

    @implementation MyClass
    -(id)initWithString:(NSString *) aName
    {
        if (self = [super init]) {
            count count = 0;
            data = nil;
            name = [aName copy];
            return self;
        }
    }
    +(MyClass *)createMyClassWithString: (NSString *) aName
    {
        return [[[self alloc] initWithString:aName] autorelease];
    }
    @end
    


    当你要把一个对象保存进变量,要使用指针类型。ObjC同时支持强和弱变量对象。强类型对象在变量类型定义的时候包含了类名。弱对象使用id类型作为实例变量。下面的例子同时显示了定义MyClass中的强弱两种类型的变量
    MyClass* myObject1;    // Strong typing
    id myObject2;    // Weak typing




    2.方法

    一个方法定义包含了方法类型,返回类型,一个或者多个关键词,参数类型和参数名。在ObjC中一个类中的方法有两种类型:实例方法,类方法。实例方法前用(-)号表明,类方法用(+)表明,通过下图可以看到,前面有一个(-)号,说明这是一个实例方法。

    在ObjC中,调用一个方法相当于传递一个消息,这里的消息指的是方法名和参数。所有的消息的分派都是动态的,这个体现了ObjC的多态性。消息调用的方式是使用方括号。如下面的例子中,向myArray对象发送insertObject:atIndex:这个消息。

    myArray insertObject:anObj atIndex:0];


    这种消息传递允许嵌套
    [[myAppObject getArray] insertObject:[myAppObject getObjectToInsert] atIndex:0];


    前面的例子都是把消息传递给实例变量,你也可以把消息传递给类本身。这时要用类方法来替代实例方法 。你可以 把他想象成静态C++类(当然不完全相同)。 类方法的定义只有一个不一样那就是用加号(+)代替减号(-)。下面就是使用一个类方法。

    NSMutableArray* myArray = nil;    // nil is essentially the same as NULL
    //            Create a new array and assign it to the myArray variable.
    myArray = [NSMutableArray arrayWithCapacity:0];


    3.属性

    属性提供了比方法更方便的访问方式。通过property标识符来替代getter和setter方法。使用方法就是在类接口文件中用@property标识符,后面跟着变量的属性,包括 copy, tetain, assign ,readonly , readwrite,nonatomic,然后是变量名。同时在实现文件中用@synthesize标识符来取代getter和setter方法。
    @property BOOL flag;
    @property (copy) NSString* nameObject;
    //            Copy the object during assignment.
    @property (readonly) UIView* rootView;  // Create only a getter method


    接口文件中使用@property

    @synthesize flag,nameObject,rootView;


    实现文件中使用@synthesize

    属性的另一个好处就是,可以使用点(.)语法来访问,如下所示:
    myObject.flag = YES;
      CGRect viewFrame = myObject.rootView.frame;


    第四节继承

    继承的语法如下,冒号后的标识符是需要继承的类。

     @interface            Circle : NSObject


    1.不支持多继承

    要注意的是ObjC只支持单继承,如果要实现多继承的话,可以通过类别和协议的方式来实现,这两种方法将在后面进行介绍。

    2.Super关键字

    ObjC提供某种方式来重写方法,并且仍然调用超类的实现方式。当需要超类实现自身的功能,同时在前面或后面执行某些额外的工作时,这种机制非常有用。为了调用继承方法的实现,需要使用super作为方法调用的目标。下面是代码示例:

    @implementation Circle
    -(void)setFillColor: (ShapeColor) c
    {
        if(c== kRedColor){
            c = kGreenColor;
        }
        [super setFillColor: c];
    }
    @end


    Super来自哪里呢?它既不是参数也不是实例变量,而是由ObjC编译器提供的某种神奇功能。向super发送消息时,实际上是在请求ObjC向该类的超类发送消息。如果超类中没在定义该消息,ObjC将按照通常的方式在继承链中继续查找对应的消息。

    第五节 对象初始化

    1.分配与初始化

    对象的初始化有两种方法:一种是[类名new], 第二种是[[类名 alloc]init]。这两种方法是等价的,不过,通常的Cocoa惯例是使用alloc和init,而不使用new.一般情况下,Cocoa程序员只是在他们不具备足够的水平来熟练使用alloc和init方法时,才将new作为辅助方法使用。

    [[类名alloc]init]有两个动作。alloc是分配动作,是从操作系统获得一块内存并将其指定为存放对象的实例变量的位置。同时,alloc方法还将这块内存区域全部初始化为0。与分配动作对应的是初始化。有如下两种初始化写法。
    Car *car = [[Class alloc] init];
    //写法1                  
    Car *car = [Car alloc];
    [car init];
    //写法2


    应该使用第一种写法,因为init返回的对象可能不是以前的那个。

    2.编写初始化方法

    下面是一段初始化的代码

    -(id)init
    {
        if(self = [super init]){
            engine = [Engine new];
            …
                }
    }


    使用self= [super init]的作用是使超类完成它们自己的初始化工作。同时因为init可能返回的是不同的对象,实例变量所在的内存位置到隐藏的self参数之间的跳离又是固定的,所以要这样使用。 注:这部分可以参考书[1]144页。

    第六节协议

    这里的协议是正式协议,相对的还有非正式协议,这在类别一节中有介绍。正式协议是一个命名的方法列表。它要求显式地采用协议。采用协议意味着要实现协议的所有方法。否则,编译器会通过生成警告来提醒你。 1.声明协议
    @protocol NSCopying
    -(id) copyWithZone:(NSZone *)zone;
    @end


    2.采用协议
    @interface Car : NSObject <NSCopying , NSCoding>
    {
        // instance            variables
    }
    @end


    协议可以采用多个,并且可以按任意顺序列出这些协议,没有什么影响。

    3.ObjC 2.0的新特性

    ObjC2.0增加了两个新的协议修饰符:@optional和@required,因此你可以像下面这样编写代码:


    @protocol BaseballPlayer
    -(void)drawHugeSalary;
    @optional
    -(void)slideHome;
    -(void)catchBall;
    @required
    -(void)swingBat;
    @end


    因此,一个采用BaseballPlayer协议的类有两个要求实现的方法:-drawHugeSalary和-swingBat,还有3个不可选择实现的方法:slideHome,catchBall和throwBall。

    第七节委托

    Cocoa中的类经常使用一种名为委托(delegate)的技术,委托是一种对象,另一个类的对象会要求委托对象执行它的某些操作。常用的是,编写委托对象并将其提供给其他一些对象,通常是提供给Cocoa生成的对象。通过实现特定的方法,你可以控制Cocoa中的对象的行为。

    通过下面的例子,可以更清楚地理解委托的实现原理。其中A对象需要把一些方法委托给其它对象来实现,例子中就是对象B,B实现了含A对象特定方法的协议ADelegate,从而可以在B中实现A委托的方法。

    @protocol ADelegate <NSObject>
    - (void)aDelegateMethod;
    ……
    
    @end
    
    @interface A : NSObject {
        ……
    
        id <ADelegate> delegate;
    }
    
    
    
    
    @property (readwrite, assign)
    
    id<ADelegate> delegate;
    
    ……
    
    @end
    
    
    
    
    @implementation A
    @synthesize delegate;
    - (void)aMethod
    {
        [delegate aDelegateMethod];
        ......
    }
    @end
    
    //A类
    
    @interface B : NSObject <ADelegate>
    
    @end
    
    @implementation B
    - (id)init {
        [[A sharedA] setDelegate:self];
    }
    
    - (void)aDelegateMethod{   //B中实现A委托的方法
    }
    
    @end
    
    //B类


    注:实现委托还可以使用类别,在第八节中将做介绍

    第八节 类别

    类别允许你在现有的类中加入新功能,这些类可以是框架中的类,并且不需要扩充它。

    1.声明类别
    @interface NSString (NumberConvenience)
    -(NSNumber *) lengthAsNumber;
    @end


    该声明表示,类别的名称是NumberConvenience,而且该类别将向NSString类中添加方法。

    2.实现类别
    @implementation NSString (NumberConvenience)
    -(NSNumber *) lengthAsNumber
    {
        unsigned int length = [self length];
        return ([NSNumber numberWithUnsignedInt: length]);
    }
    @end


    3.局限性

    类别有两方面的局限性。第一,无法向类中添加新的实例变量。类别没有位置容纳实例变量。第二,名称冲突,即类别中的方法与现有的方法重名。当发生名称冲突时,类别具有更高的优先级。这点可以通过增加一个前缀的方法解决。

    4.非正式协议和委托类别

    实现委托除了第七节中应用协议的方式,还可以使用类别。具体做法就是把委托对象要实现的方法声明为一个NSObject的类别。如下面的代码所示:
    @interface NSObject(NSSomeDelegateMethods)
    -(void)someMethod;
    …
    @end


    通过将这些方法声明为NSObject的类别,使得只要对象实现了委托方法,任何类的对象都可以成为委托对象。创建一个NSObject的类别称为“创建一个非正式协议”。非正式协议只是一种表达方式,它表示“这里有一些你可能想实现的方法”,第六节介绍的协议可以叫做正式协议。

    非正式协议的作用类似于使用许多@optional的正式协议,并且前者正逐渐被后者所代替。

    5.选择器

    选择器只是一个方法名称,它以ObjC运行时使用的特殊方式编码,以快速执行查询。你可以使用@selector()预编译指令指定选择器,其中方法名位于圆括号中。如一个类中setEngine:方法的选择器是:
    @selector(setEngine:)


    因为选择器可以被传递,可以作为方法的参数使用,甚至可以作为实例变量存储。这样可以生成一些非常强大和灵活的构造。

    第九节Posing

    Posing有点像类别,但不太一样。它允许你扩充一个类,并且全面性地扮演(pose)这个超类。例如:你有一个扩充NSArry的NSArrayChild对象。如果你让NSArrayChild扮演NSArry,则在你的代码中所有的NSArray都会自动被替代为NSArrayChild.

    @interface FractionB: Fraction
    -(void) print;
    @end
    
    @implementation FractionB
    -(void) print {
        printf("(%i/%i)", numerator, denominator );
    }
    @end
    
    //Fraction.m


    int main( int argc, const char *argv[] ) {
        Fraction *frac = [[Fraction alloc] initWithNumerator: 3 denominator: 10];
        //print it
        printf("The fraction is: " );
        [frac print];
        printf("\n" );
    
    
    
    
        //make FractionB pose as Fraction
        [FractionB poseAsClass: [Fraction class]];
        Fraction *frac2 = [[Fraction alloc] initWithNumerator: 3 denominator: 10];
    
    
    
    
        // print it
        printf("The fraction is: " );
        [frac2  print];
        printf( "\n" );
        //free memory
        [frac release];
        [frac2 release];
    
        return 0;
    }
    
    // Main.m


    输出
    The fraction is: 3/10
    The fraction is: (3/10)



    这个程序的输出中,第一个fraction会输出3/10,而第二个会输出(3/10),这是FractionB中实现的方式。poseAsClass这个方法是NSObject的一部分,它允许子类扮演超类。

    第十节动态识别 (Dynamictypes)

    下面是应用动态识别时所用到的方法:
    -(BOOL)isKindOfClass: classObj
        //是否是其子孙或一员
    
    -(BOOL)isMemberOfClass: classObj
        // 是否是其一员
    
    -(BOOL)respondsToSelector: selector
        // 是否有这种方法
    
    +(BOOL)instancesRespondToSelector: selector
        // 类的对象是否有这种方法
    
    -(id)performSelector: selector
        // 执行对象的方法

    通过下面的代码可以更清楚地理解动态类型的使用:

    #import "Square.h"
    #import "Rectangle.h"
    #import <stdio.h>  
    
    int main( int argc, const char *argv[] ) {
        Rectangle *rec = [[Rectangle alloc] initWithWidth: 10 height: 20];
        Square *sq = [[Square alloc] initWithSize: 15];
        //            isMemberOfClass
        //            true             
    
        if( [sq isMemberOfClass: [Square class]] == YES ) {
            printf( "square is a member of square class\n" );
        }
        //            false
        if ( [sq isMemberOfClass: [Rectangle class]] == YES ) {
            printf( "square is a member of rectangle class\n" );
        }
        //            false
        if( [sq isMemberOfClass: [NSObject class]] == YES ) {
            printf("square is a member of object class\n" );
        }
        //            isKindOfClass
        //            true             
    
        if ( [sq isKindOfClass: [Square class]] == YES ) {
            printf("square is a kind of square class\n" );
        }
        //            true
        if( [sq isKindOfClass: [Rectangle class]] == YES ) {
            printf("square is a kind of rectangle class\n" );
        }
        //            true
        if( [sq isKindOfClass: [NSObject class]] == YES ) {
            printf("square is a kind of object class\n" );
        }
        //            respondsToSelector
        //            true
        if( [sq respondsToSelector: @selector( setSize: )] == YES ) {
            printf("square responds to setSize: method\n" );
        }
        //            false
        if( [sq respondsToSelector: @selector( nonExistant )] == YES ) {
            printf("square responds to nonExistant method\n" );
        }
        //            true
        if( [Square respondsToSelector: @selector( alloc )] == YES ) {
            printf("square class responds to alloc method\n" );
        }
        //            instancesRespondToSelector
        //            false
        if( [Rectangle instancesRespondToSelector: @selector( setSize: )] == YES ) {
            printf("rectangle instance responds to setSize: method\n" );
        }
        //            true
        if( [Square instancesRespondToSelector: @selector( setSize: )] == YES ) {
            printf("square instance responds to setSize: method\n" );
        }
    //            free memory
        [rec release];
        [sq  release];
    
    
        return 0;
    }


    输出:
    square is a member of square class
    square is a kind of square class
    square is a kind of rectangle class
    square is a kind of object class
    square responds to setSize: method
    square class responds to alloc method
    square instance responds to setSize: method




    0
    3
    分享到:
    评论
    1 楼 qianlei541 2012-09-26  
    不错,学习下。

    相关推荐

      基于模糊故障树的工业控制系统可靠性分析与Python实现

      内容概要:本文探讨了模糊故障树(FFTA)在工业控制系统可靠性分析中的应用,解决了传统故障树方法无法处理不确定数据的问题。文中介绍了模糊数的基本概念和实现方式,如三角模糊数和梯形模糊数,并展示了如何用Python实现模糊与门、或门运算以及系统故障率的计算。此外,还详细讲解了最小割集的查找方法、单元重要度的计算,并通过实例说明了这些方法的实际应用场景。最后,讨论了模糊运算在处理语言变量方面的优势,强调了在可靠性分析中处理模糊性和优化计算效率的重要性。 适合人群:从事工业控制系统设计、维护的技术人员,以及对模糊数学和可靠性分析感兴趣的科研人员。 使用场景及目标:适用于需要评估复杂系统可靠性的场合,特别是在面对不确定数据时,能够提供更准确的风险评估。目标是帮助工程师更好地理解和预测系统故障,从而制定有效的预防措施。 其他说明:文中提供的代码片段和方法可用于初步方案验证和技术探索,但在实际工程项目中还需进一步优化和完善。

      风力发电领域双馈风力发电机(DFIG)Simulink模型的构建与电流电压波形分析

      内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。

      基于西门子S7-200 PLC和组态王的八层电梯控制系统设计与实现

      内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王软件构建的八层电梯控制系统。首先阐述了系统的硬件配置,包括PLC的IO分配策略,如输入输出信号的具体分配及其重要性。接着深入探讨了梯形图编程逻辑,涵盖外呼信号处理、轿厢运动控制以及楼层判断等关键环节。随后讲解了组态王的画面设计,包括动画效果的实现方法,如楼层按钮绑定、轿厢移动动画和门开合效果等。最后分享了一些调试经验和注意事项,如模拟困人场景、防抖逻辑、接线艺术等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的人群。 使用场景及目标:适用于需要设计和实施小型电梯控制系统的工程项目。主要目标是帮助读者掌握PLC编程技巧、组态画面设计方法以及系统联调经验,从而提高项目的成功率。 其他说明:文中提供了详细的代码片段和调试技巧,有助于读者更好地理解和应用相关知识点。此外,还强调了安全性和可靠性方面的考量,如急停按钮的正确接入和硬件互锁设计等。

      CarSim与Simulink联合仿真:基于MPC模型预测控制实现智能超车换道

      内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。

      基于单片机的鱼缸监测设计(51+1602+AD0809+18B20+UART+JKx2)#0107

      包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51单片机作为主控; 2、采用AD0809(仿真0808)检测"PH、氨、亚硝酸盐、硝酸盐"模拟传感; 3、采用DS18B20检测温度; 4、采用1602液晶显示检测值; 5、检测值同时串口上传,调试助手监看; 6、亦可通过串口指令对加热器、制氧机进行控制;

      风电领域双馈永磁风电机组并网仿真及短路故障分析与MPPT控制

      内容概要:本文详细介绍了双馈永磁风电机组并网仿真模型及其短路故障分析方法。首先构建了一个9MW风电场模型,由6台1.5MW双馈风机构成,通过升压变压器连接到120kV电网。文中探讨了风速模块的设计,包括渐变风、阵风和随疾风的组合形式,并提供了相应的Python和MATLAB代码示例。接着讨论了双闭环控制策略,即功率外环和电流内环的具体实现细节,以及MPPT控制用于最大化风能捕获的方法。此外,还涉及了短路故障模块的建模,包括三相电压电流特性和离散模型与phasor模型的应用。最后,强调了永磁同步机并网模型的特点和注意事项。 适合人群:从事风电领域研究的技术人员、高校相关专业师生、对风电并网仿真感兴趣的工程技术人员。 使用场景及目标:适用于风电场并网仿真研究,帮助研究人员理解和优化风电机组在不同风速条件下的性能表现,特别是在短路故障情况下的应对措施。目标是提高风电系统的稳定性和可靠性。 其他说明:文中提供的代码片段和具体参数设置有助于读者快速上手并进行实验验证。同时提醒了一些常见的错误和需要注意的地方,如离散化步长的选择、初始位置对齐等。

      空手道训练测试系统BLE106版本

      适用于空手道训练和测试场景

      【音乐创作领域AI提示词】AI音乐提示词(deepseek,豆包,kimi,chatGPT,扣子空间,manus,AI训练师)

      内容概要:本文介绍了金牌音乐作词大师的角色设定、背景经历、偏好特点、创作目标、技能优势以及工作流程。金牌音乐作词大师凭借深厚的音乐文化底蕴和丰富的创作经验,能够为不同风格的音乐创作歌词,擅长将传统文化元素与现代流行文化相结合,创作出既富有情感又触动人心的歌词。在创作过程中,会严格遵守社会主义核心价值观,尊重用户需求,提供专业修改建议,确保歌词内容健康向上。; 适合人群:有歌词创作需求的音乐爱好者、歌手或音乐制作人。; 使用场景及目标:①为特定主题或情感创作歌词,如爱情、励志等;②融合传统与现代文化元素创作独特风格的歌词;③对已有歌词进行润色和优化。; 阅读建议:阅读时可以重点关注作词大师的创作偏好、技能优势以及工作流程,有助于更好地理解如何创作出高质量的歌词。同时,在提出创作需求时,尽量详细描述自己的情感背景和期望,以便获得更贴合心意的作品。

      linux之用户管理教程.md

      linux之用户管理教程.md

      基于单片机的搬运机器人设计(51+1602+L298+BZ+KEY6)#0096

      包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示设置及状态; 3、采用L298驱动两个电机,模拟机械臂动力、移动底盘动力; 3、首先按键配置-待搬运物块的高度和宽度(为0不能开始搬运); 4、按下启动键开始搬运,搬运流程如下: 机械臂先把物块抓取到机器车上, 机械臂减速 机器车带着物块前往目的地 机器车减速 机械臂把物块放下来 机械臂减速 机器车回到物块堆积处(此时机器车是空车) 机器车减速 蜂鸣器提醒 按下复位键,结束本次搬运

      基于下垂控制的三相逆变器电压电流双闭环仿真及MATLAB/Simulink/PLECS实现

      内容概要:本文详细介绍了基于下垂控制的三相逆变器电压电流双闭环控制的仿真方法及其在MATLAB/Simulink和PLECS中的具体实现。首先解释了下垂控制的基本原理,即有功调频和无功调压,并给出了相应的数学表达式。随后讨论了电压环和电流环的设计与参数整定,强调了两者带宽的差异以及PI控制器的参数选择。文中还提到了一些常见的调试技巧,如锁相环的响应速度、LC滤波器的谐振点处理、死区时间设置等。此外,作者分享了一些实用的经验,如避免过度滤波、合理设置采样周期和下垂系数等。最后,通过突加负载测试展示了系统的动态响应性能。 适合人群:从事电力电子、微电网研究的技术人员,尤其是有一定MATLAB/Simulink和PLECS使用经验的研发人员。 使用场景及目标:适用于希望深入了解三相逆变器下垂控制机制的研究人员和技术人员,旨在帮助他们掌握电压电流双闭环控制的具体实现方法,提高仿真的准确性和效率。 其他说明:本文不仅提供了详细的理论讲解,还结合了大量的实战经验和调试技巧,有助于读者更好地理解和应用相关技术。

      光伏并网逆变器全栈开发资料:硬件设计、控制算法及实战经验

      内容概要:本文详细介绍了光伏并网逆变器的全栈开发资料,涵盖了从硬件设计到控制算法的各个方面。首先,文章深入探讨了功率接口板的设计,包括IGBT缓冲电路、PCB布局以及EMI滤波器的具体参数和设计思路。接着,重点讲解了主控DSP板的核心控制算法,如MPPT算法的实现及其注意事项。此外,还详细描述了驱动扩展板的门极驱动电路设计,特别是光耦隔离和驱动电阻的选择。同时,文章提供了并联仿真的具体实现方法,展示了环流抑制策略的效果。最后,分享了许多宝贵的实战经验和调试技巧,如主变压器绕制、PWM输出滤波、电流探头使用等。 适合人群:从事电力电子、光伏系统设计的研发工程师和技术爱好者。 使用场景及目标:①帮助工程师理解和掌握光伏并网逆变器的硬件设计和控制算法;②提供详细的实战经验和调试技巧,提升产品的可靠性和性能;③适用于希望深入了解光伏并网逆变器全栈开发的技术人员。 其他说明:文中不仅提供了具体的电路设计和代码实现,还分享了许多宝贵的实际操作经验和常见问题的解决方案,有助于提高开发效率和产品质量。

      机器人轨迹规划中粒子群优化与3-5-3多项式结合的时间最优路径规划

      内容概要:本文详细介绍了粒子群优化(PSO)算法与3-5-3多项式相结合的方法,在机器人轨迹规划中的应用。首先解释了粒子群算法的基本原理及其在优化轨迹参数方面的作用,随后阐述了3-5-3多项式的数学模型,特别是如何利用不同阶次的多项式确保轨迹的平滑过渡并满足边界条件。文中还提供了具体的Python代码实现,展示了如何通过粒子群算法优化时间分配,使3-5-3多项式生成的轨迹达到时间最优。此外,作者分享了一些实践经验,如加入惩罚项以避免超速,以及使用随机扰动帮助粒子跳出局部最优。 适合人群:对机器人运动规划感兴趣的科研人员、工程师和技术爱好者,尤其是有一定编程基础并对优化算法有初步了解的人士。 使用场景及目标:适用于需要精确控制机器人运动的应用场合,如工业自动化生产线、无人机导航等。主要目标是在保证轨迹平滑的前提下,尽可能缩短运动时间,提高工作效率。 其他说明:文中不仅给出了理论讲解,还有详细的代码示例和调试技巧,便于读者理解和实践。同时强调了实际应用中需要注意的问题,如系统的建模精度和安全性考量。

      【KUKA 机器人资料】:kuka机器人压铸欧洲标准.pdf

      KUKA机器人相关资料

      光子晶体中BIC与OAM激发的模拟及三维Q值计算

      内容概要:本文详细探讨了光子晶体中的束缚态在连续谱中(BIC)及其与轨道角动量(OAM)激发的关系。首先介绍了光子晶体的基本概念和BIC的独特性质,随后展示了如何通过Python代码模拟二维光子晶体中的BIC,并解释了BIC在光学器件中的潜在应用。接着讨论了OAM激发与BIC之间的联系,特别是BIC如何增强OAM激发效率。文中还提供了使用有限差分时域(FDTD)方法计算OAM的具体步骤,并介绍了计算本征态和三维Q值的方法。此外,作者分享了一些实验中的有趣发现,如特定条件下BIC表现出OAM特征,以及不同参数设置对Q值的影响。 适合人群:对光子晶体、BIC和OAM感兴趣的科研人员和技术爱好者,尤其是从事微纳光子学研究的专业人士。 使用场景及目标:适用于希望通过代码模拟深入了解光子晶体中BIC和OAM激发机制的研究人员。目标是掌握BIC和OAM的基础理论,学会使用Python和其他工具进行模拟,并理解这些现象在实际应用中的潜力。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实验心得和技巧,帮助读者避免常见错误,提高模拟精度。同时,强调了物理离散化方式对数值计算结果的重要影响。

      C#联合Halcon 17.12构建工业视觉项目的配置与应用

      内容概要:本文详细介绍了如何使用C#和Halcon 17.12构建一个功能全面的工业视觉项目。主要内容涵盖项目配置、Halcon脚本的选择与修改、相机调试、模板匹配、生产履历管理、历史图像保存以及与三菱FX5U PLC的以太网通讯。文中不仅提供了具体的代码示例,还讨论了实际项目中常见的挑战及其解决方案,如环境配置、相机控制、模板匹配参数调整、PLC通讯细节、生产数据管理和图像存储策略等。 适合人群:从事工业视觉领域的开发者和技术人员,尤其是那些希望深入了解C#与Halcon结合使用的专业人士。 使用场景及目标:适用于需要开发复杂视觉检测系统的工业应用场景,旨在提高检测精度、自动化程度和数据管理效率。具体目标包括但不限于:实现高效的视觉处理流程、确保相机与PLC的无缝协作、优化模板匹配算法、有效管理生产和检测数据。 其他说明:文中强调了框架整合的重要性,并提供了一些实用的技术提示,如避免不同版本之间的兼容性问题、处理实时图像流的最佳实践、确保线程安全的操作等。此外,还提到了一些常见错误及其规避方法,帮助开发者少走弯路。

      基于Matlab的9节点配电网中分布式电源接入对节点电压影响的研究

      内容概要:本文探讨了分布式电源(DG)接入对9节点配电网节点电压的影响。首先介绍了9节点配电网模型的搭建方法,包括定义节点和线路参数。然后,通过在特定节点接入分布式电源,利用Matlab进行潮流计算,模拟DG对接入点及其周围节点电压的影响。最后,通过绘制电压波形图,直观展示了不同DG容量和接入位置对配电网电压分布的具体影响。此外,还讨论了电压越限问题以及不同线路参数对电压波动的影响。 适合人群:电力系统研究人员、电气工程学生、从事智能电网和分布式能源研究的专业人士。 使用场景及目标:适用于研究分布式电源接入对配电网电压稳定性的影响,帮助优化分布式电源的规划和配置,确保电网安全稳定运行。 其他说明:文中提供的Matlab代码和图表有助于理解和验证理论分析,同时也为后续深入研究提供了有价值的参考资料。

      电力市场领域中基于CVaR风险评估的省间交易商最优购电模型研究与实现

      内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。

      西门子1200 PLC轴运动控制程序模板及其实战应用详解

      内容概要:本文详细介绍了一套成熟的西门子1200 PLC轴运动控制程序模板,涵盖多轴伺服控制、电缸控制、PLC通讯、气缸报警块、完整电路图、威纶通触摸屏程序和IO表等方面的内容。该模板已在多个项目中成功应用,如海康威视的路由器外壳装配机,确保了系统的稳定性和可靠性。文中不仅提供了具体的代码示例,还分享了许多实战经验和技巧,如参数设置、异常处理机制、通讯优化等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC编程和轴运动控制的从业者。 使用场景及目标:适用于需要快速搭建稳定可靠的PLC控制系统的企业和个人开发者。通过学习和应用该模板,可以提高开发效率,减少调试时间和错误发生率,从而更好地满足项目需求。 其他说明:文章强调了程序模板的实用性,特别是在异常处理和参数配置方面的独特设计,能够有效应对复杂的工业环境挑战。此外,还提到了一些常见的陷阱和解决方案,帮助读者避开常见错误,顺利实施项目。

      基于混合整数规划的微网电池储能容量优化配置方法及其应用

      内容概要:本文详细探讨了微网电池储能容量优化配置的方法和技术。随着能源结构的转型和分布式能源的发展,微网作为新型电力系统受到广泛关注。文中介绍了混合整数规划(MILP)在储能容量优化配置中的应用,通过建立目标函数和约束条件,实现了储能系统运行成本最小化和经济效益最大化。具体而言,模型考虑了储能系统的初始投资成本、运维成本以及能量平衡、储能容量和充放电功率等约束条件。此外,文章还讨论了实际应用中的挑战,如数据获取困难、模型复杂性和求解器性能等问题,并提出了相应的改进建议。 适合人群:从事微网系统研究的技术人员、研究人员和相关领域的学生。 使用场景及目标:适用于需要优化微网储能系统配置的研究和工程项目,旨在降低运行成本、提高经济效益,并确保系统稳定运行。 其他说明:文章提供了详细的MATLAB代码示例,展示了如何使用intlinprog函数求解混合整数线性规划问题。同时,强调了在实际应用中需要根据具体情况调整模型和参数,以应对复杂多变的现实环境。

    Global site tag (gtag.js) - Google Analytics