`
ganlv
  • 浏览: 35578 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

一步步优化JVM五:优化延迟或者响应时间(3)

 
阅读更多

CMS垃圾回收器周期   


   一旦young的空间大小(包含eden和survivor空间)已经完善得满足应用对MinorGC产生延迟要求,注意力可以转移到优化CMS垃圾回收器,降低最差延迟时间的时间长度以及最小化最差延迟的频率。目标是保持可用的old代空间和并发垃圾回收,避免stop-the-world压缩垃圾回收。

   stop-the-world压缩垃圾回收是垃圾回收影响延迟的最差情况,对某些应用来说,恐怕无法完全避免开这些,但是本节提供的优化信息至少可以减少他们的频率。

   成功的优化CMS垃圾回收器需要达到的效果是old代的里面的垃圾回收的效率要和young代转移对象到old代的效率相同,没有能够完成这个标准可以称为“比赛失败”,比赛失败的结果就是导致stop-the-world压缩垃圾回收。不比赛中失败的一个关键是让下面两个事情结合起来:1、old代有足够的空间。2、启动CMS垃圾回收周期开始时机——快到回收对象的速度比较转移对象来的速度更快。

   CMS周期的启动是基于old代的空间大小的。如果CMS周期开始的太晚,他就会输掉比赛,没有能够快速的回收对象以避免溢出old代空间。如果CMS周期开始得太早,会造成不必要的压力以及影响应用的吞吐量。但是,通常来讲过早的启动总比过晚的启动好。

   HotSpot VM自动地计算出当占用是多少时启动CMS垃圾回收周期。不过在一些场景下,对于避免stop-the-world垃圾回收,他做得并不好。如果观察到stop-the-world垃圾回收,你可以优化该什么时候启动CMS周期。在CMS垃圾回收中,stop-the-world压缩垃圾回收在垃圾回收日志中输出是“concurrent mode failure”,下面一个例子:

   174.445: [GC 174.446: [ParNew: 66408K->66408K(66416K), 0.0000618
   secs]174.446: [CMS ( concurrent mode failure): 161928K->162118K(175104K),
   4.0975124 secs] 228336K->162118K(241520K)

   如果你发现有concurrent mode failure你可以通过下面这个选项来控制什么时候启动CMS垃圾回收:

   
-XX:CMSInitiatingOccupancyFraction=<percent>


   这个值指定了CMS垃圾回收时old代的空间占用率该是什么值。举例说明,如果你希望old代占用率是65%的时候,启动CMS垃圾回收,你可以设置-XX:CMSInitiatingOccupancyFraction=65。另外一个可以同时使用的选项是

   
-XX:+UseCMSInitiatingOccupancyOnly


   -XX:+UseCMSInitiatingOccupancyOnly指定HotSpot VM总是使用-XX:CMSInitiatingOccupancyFraction的值作为old的空间使用率限制来启动CMS垃圾回收。如果没有使用-XX:+UseCMSInitiatingOccupancyOnly,那么HotSpot VM只是利用这个值来启动第一次CMS垃圾回收,后面都是使用HotSpot VM自动计算出来的值。

   -XX:CMSInitiatingOccupancyFraction=<percent>这个指定的值,应该比垃圾回收之后存活对象的占用率更高,怎么样计算存活对象的大小前面在“决定内存占用”的章节已经说过了。如果<percent>不比存活对象的占用量大,CMS垃圾回收器会一直运行。通常的建议是-XX:CMSInitiatingOccupancyFraction的值应该是存活对象的占用率的1.5倍。举例说明一下,假如用下面的Java堆选项配置:

   
-Xmx1536m -Xms1536m -Xmn512m


   那么old代的空间大小是1024M(1536-512 = 1024m)。如果存活对象的大小是350M的话,CMS垃圾回收周期的启动阀值应该是old代占用空间是525M,那么占用率就应该是51%(525/1024=51%),这个只是初始值,后面还可能根据垃圾回收日志进行修改。那么修改后的命令行选项是:

   
-Xmx1536m -Xms1536m -Xmn512m  -XX:+UseCMSInitiatingOccupancyOnly 
   -XX:CMSInitiatingOccupancyFraction=51


   该多早或者多迟启动CMS周期依赖于对象从young代转移到old代的速率,也就是说,old代空间的增长率。如果old代填充速度比较缓慢,你可以晚一些启动CMS周期,如果填充速度很快,那么就需要早一点启动CMS周期,但是不能小于存活对象的占用率。如果需要设置得比存活对象的占用率小,应该是增加old代的空间。

   想知道CMS周期是开始的太早还是太晚,可以通过评估垃圾回收信息识别出来。下面是一个CMS周期开始得太晚的例子。为了更好阅读,稍微修改了输出内容:

[ParNew 742993K->648506K(773376K), 0.1688876 secs]
[ParNew 753466K->659042K(773376K), 0.1695921 secs]
[CMS-initial-mark 661142K(773376K), 0.0861029 secs]
[Full GC 645986K->234335K(655360K), 8.9112629 secs]
[ParNew 339295K->247490K(773376K), 0.0230993 secs]
[ParNew 352450K->259959K(773376K), 0.1933945 secs]

   注意FullGC在CMS-inital-mark之后很快就发生了。CMS-initial-mark是报告CMS周期多个字段中的一个。下面的例子会使用到更多的字段。

    下面是一个CMS开始的太早了的情况:
 
[ParNew 390868K->296358K(773376K), 0.1882258 secs]
[CMS-initial-mark 298458K(773376K), 0.0847541 secs]
[ParNew 401318K->306863K(773376K), 0.1933159 secs]
[CMS-concurrent-mark: 0.787/0.981 secs]
[CMS-concurrent-preclean: 0.149/0.152 secs]
[CMS-concurrent-abortable-preclean: 0.105/0.183 secs]
[CMS-remark 374049K(773376K), 0.0353394 secs]
[ParNew 407285K->312829K(773376K), 0.1969370 secs]
[ParNew 405554K->311100K(773376K), 0.1922082 secs]
[ParNew 404913K->310361K(773376K), 0.1909849 secs]
[ParNew 406005K->311878K(773376K), 0.2012884 secs]
[CMS-concurrent-sweep: 2.179/2.963 secs]
[CMS-concurrent-reset: 0.010/0.010 secs]
[ParNew 387767K->292925K(773376K), 0.1843175 secs]
[CMS-initial-mark 295026K(773376K), 0.0865858 secs]
[ParNew 397885K->303822K(773376K), 0.1995878 secs]

   CMS-initial-mark表示CMS周期的开始, CMS-initial-sweepCMS-concurrent-reset表示周期的结束。注意第一个CMS-initial-mark报告堆大小是298458K,然后注意,ParNew MinorGC报告在CMS-initial-mark和CMS-concurrent-reset之间只有很少的占用量变化,堆的占用量可以通过ParNew的->的右边的数值来表示。在这个例子中,CMS周期回收了很少的垃圾,通过在CMS-initial-mark和CMS-concurrent-reset之间只有很少的占用量变化可看出来。这里正确的做法是启动CMS周期用更大的old代空间占用率,通过使用参数
-XX:+UseCMSInitiatingOccupancyOnly和-XX:CMSInitiatingOccupancyFraction=<percent>。基于初始CMS-initial-mark占用量是298458K以及Java堆的大小是773376K,就是CMS发生的占用率是35%到40%(298458K/773376K=38.5%),可以使用选项来强制提高占用率的值。

   下面是一个CMS周期回收了大量old代空间的例子,而且没有经历stop-the-world压缩垃圾回收,也就没有并发错误(concurrent mode failure)。同样的修改输出格式:

[ParNew 640710K->546360K(773376K), 0.1839508 secs]
[CMS-initial-mark 548460K(773376K), 0.0883685 secs]
[ParNew 651320K->556690K(773376K), 0.2052309 secs]
[CMS-concurrent-mark: 0.832/1.038 secs]
[CMS-concurrent-preclean: 0.146/0.151 secs]
[CMS-concurrent-abortable-preclean: 0.181/0.181 secs]
[CMS-remark 623877K(773376K), 0.0328863 secs]
[ParNew 655656K->561336K(773376K), 0.2088224 secs]
[ParNew 648882K->554390K(773376K), 0.2053158 secs]
[ParNew 489586K->395012K(773376K), 0.2050494 secs]
[ParNew 463096K->368901K(773376K), 0.2137257 secs]
[CMS-concurrent-sweep: 4.873/6.745 secs]
[CMS-concurrent-reset: 0.010/0.010 secs]
[ParNew 445124K->350518K(773376K), 0.1800791 secs]
[ParNew 455478K->361141K(773376K), 0.1849950 secs]

   在这个例子中,在CMS周期开始的时候,CMS-initial-mark表明占用量是548460K。在CMS周期开始和结束(CMS-concurrent-reset)之间,ParNew MinorGC报告显著的减少了对象的占用量。尤其,在CMS-concurrent-sweep之前,占用量从561336K降低到了368901K。这个表明在CMS周期中,有190M空间被垃圾回收。需要注意的是,在CMS-concurrent-sweep之后的第一个ParNew MinorGC报告的占用量是350518K。这个说明超过190M被垃圾回收(561336K-350518K=210818K=205.88M)。

   如果你决定优化CMS周期的启动,多尝试几个不同的old代占用率。监控垃圾回收信息以及分析这些信息可以帮助你做出正确的决定。

强制的垃圾回收
   如果你想要观察通过调用System.gc()来启动的FullGC,当使用用CMS的时候,有两种方法来处理这种情况。

   1、你可以请求HotSpot VM执行System.gc()的时候使用CMS周期,使用如下命令选项:

 
 -XX:+ExplicitGCInvokesConcurrent
   或者
   -XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses


   第一个选项在Java 6及更新版本中能够使用,第二选项在从Java 6 Update 4之后才有。如果可以,建议使用后者。

   2、你可以请求HotSpot VM选项忽视强制的调用System.gc(),可以使用如下选项:

   
-XX:+DisableExplicitGC



   这个选项用来让其他垃圾回收器忽略System.gc()请求。
   
   当关闭的强制垃圾回收需要小心,这样做可能对Java性能产生很大的影响,关闭这个功能就像使用System.gc()一样需要明确的理由。

   在垃圾回收日志里面找出明确的垃圾回收信息是非常容易的。垃圾回收的输出里面包含了一段文字来说明FullGC是用于调用System.gc().下面是一个例子:

2010-12-16T23:04:39.452-0600: [Full GC (System)
[CMS: 418061K->428608K(16384K), 0.2539726 secs]
418749K->4288608K(31168K),
[CMS Perm : 32428K->32428K(65536K)],0.2540393 secs]
[Times: user=0.12 sys=0.01, real=0.25 secs]

   注意Full GC后面的(System)标签,这个说明是System.gc()引起的FullGC。如果你在垃圾回收日志里面观察到了明确的FullGC,想想为什么会出现、是否需要关闭、是否需要把应用源代码里面的相关代码删除掉,对CMS垃圾回收周期是否有意义。

并发的Permanent代垃圾回收

    FullGC发生可能是由于permanent空间满了引起的,监控FullGC垃圾回收信息,然后观察Permanent代的占用量,判断FullGC是否是由于permanent区域满了引起的。下面是一个由于permanent代满了引起的FullGC的例子:

2010-12-16T17:14:32.533-0600: [Full GC
[CMS: 95401K->287072K(1048576K), 0.5317934 secs]
482111K->287072K(5190464K),
[CMS Perm : 65534K->58281K(65536K)], 0.5319635 secs]
[Times: user=0.53 sys=0.00, real=0.53 secs]

    注意permanent代的空间占用量,通过CMS Perm :标签识别。permanent代空间大小是括号里面的值,65536K。在FullGC之前permanent代的占用量是->左边的值,65534K,FullGC之后的值是58281K。可以看到的是,在FullGC之前,permanent代的占用量以及基本上和permanent代的容量非常接近了,这个说明,FullGC是由Permanent代空间溢出导致的。同样需要注意的是,old代还没有到溢出空间的时候,而且没有证据说明CMS周期启动了。

   HotSpot VM默认情况下,CMS不会垃圾回收permanent代空间,尽管垃圾回收日志里面有CMS Perm标签。为让CMS回收permanent代的空间,可以用过下面这个命令选项来做到:

   
-XX:+CMSClassUnloadingEnabled


   如果使用Java 6 update 3及之前的版本,你必须指定一个命令选项:

 
 -XX:+CMSPermGenSweepingEnabled


   你可以控制permanent的空间占用率来启动CMS permanent代垃圾回收通过下面这个命令选项:

   
-XX:CMSInitiatingPermOccupancyFraction=<percent>


   这个参数的功能和-XX:CMSInitiatingOccupancyFraction很像,他指的是启动CMS周期的permanent代的占用率。这个参数同样需要和-XX:+CMSClassUnloadingEnabled配合使用。如果你想一直使用-XX:CMSInitiatingPermOccupancyFraction的值作为启动CMS周期的条件,你必须要指定另外一个选项:

   
-XX:+UseCMSInitiatingOccupancyOnly


CMS暂停时间优化

   在CMS周期里面,有两个阶段是stop-the-world阶段,这个阶段所有的应用线程都被阻塞了。这两阶段是“初始标记”阶段和“再标记”阶段,尽管初始标记解决是单线程的,但是通过不需要花费太长时间,至少比其他垃圾回收的时间短。再标记阶段是多线程的,线程数可通过命令选项来控制:

   
-XX:ParallelGCThreads=<n>


   在Java 6 update 23之后,默认值是通过Runtime.availableProcessors()来确定的,不过是建立在返回值小于等于8的情况下,反之,会使用Runtime.availableProcessors()*5/8作为线程数。如果有多个程序运行在同一个机器上面,建议使用比默认线程数更少的线程数。否则,垃圾回收可能会引起其他应用的性能下降,由于在同一个时刻,垃圾回收器使用太多的线程。

   在某些情况下设置下面这个选项可以减少再标记的时间:

   
-XX:+CMSScavengeBeforeRemark


   这个选项强制HotSpot VM在FullGC之前执行MinorGC,在再标记步骤之前做MinorGC,可以减少再标记的工作量,由于减少了young代的对象数,这些对象能够在old代获取到的。

   如果应用有大量的引用或者finalizable对象需要处理,指定下面这个选项可以减少垃圾回收的时间:

   
-XX:+ParallelRefProcEnabled

   这个选项可以用HotSpot VM的任何一种垃圾回收器上,他会是用多个的引用处理线程,而不是单个线程。这个选项不会启用多线程运行方法的finalizer。他会使用很多线程去发现需要排队通知的finalizable对象。

下一步

   这一步结束,你需要看看应用的延迟需要是否满足了,无论是使用throughput垃圾回收器或者并发垃圾回收器。如果没有能够满足应用的需要,那么回头看看需求是否合理或者修改应用程序。如果满足了应用的需求,那么我们就进入下一步——优化吞吐量。

分享到:
评论

相关推荐

    一步步优化JVM.docx

    3. **响应时间**:用户请求到系统响应之间的时间,优化响应时间可以提升用户体验。 4. **内存占用**:优化内存使用可以减少系统资源消耗,但可能导致性能下降,需要找到平衡点。 5. **启动时间**:优化启动时间...

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

    梦限大mewtype成员 藤都子RVC模型

    考虑微网新能源经济消纳的共享储能优化配置附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    tokenizers-0.30.0.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    人形机器人是当今世界科技领域最具潜力和前景的产业之一 随着科技的不断进步和人工智能技术的快速发展,人形机器人作为未来产业的新赛道和经济增长的新引擎,将深刻变革人类生产生活方式,重塑全球产业发展格局

    人形机器人产业的发展需要人工智能、高端制造、新材料等先进技术的协同创新和突破。

    【状态估计】用于非标量系统估计的最优卡尔曼滤波附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    开关电源的尖峰干扰及其抑制.zip

    开关电源的尖峰干扰及其抑制.zip

    房地产培训 -新进业务员压马路市调培训.ppt

    房地产培训 -新进业务员压马路市调培训.ppt

    MATLAB实现计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度

    内容概要:本文探讨了基于MATLAB平台的虚拟电厂优化调度方法,特别关注电转气(P2G)协同、碳捕集技术和垃圾焚烧的应用。文中介绍了虚拟电厂的概念及其重要性,详细解释了碳捕集、需求响应和电转气协同调度的关键技术,并展示了如何使用MATLAB和CPLEX求解器进行优化调度的具体步骤。通过定义决策变量、构建目标函数和设定约束条件,最终实现了多目标优化,即经济性最优和碳排放最低。此外,还讨论了一些常见的代码实现技巧和潜在的问题解决方案。 适合人群:从事能源管理和优化调度研究的专业人士,尤其是那些熟悉MATLAB编程和优化算法的人士。 使用场景及目标:适用于希望深入了解虚拟电厂运作机制和技术实现的研究人员和工程师。主要目标是通过优化调度提高能源利用效率,减少碳排放,降低成本。 其他说明:文章提供了详细的代码片段和理论分析,有助于读者更好地理解和复现实验结果。同时,强调了在实际应用中需要注意的一些细节问题,如约束条件的平衡、求解器配置等。

    在网格化数据集上轻松执行 2D 高通、低通、带通或带阻滤波器研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-pinecone-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-pinecone-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-pinecone-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-pinecone-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-pinecone-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-pinecone-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-pinecone-store,1.0.0-M7,org.springframework.ai.vectorstore.pinecone,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,pinecone,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-pinecone

    基于MATLAB混合整数规划的微网电池储能容量优化配置

    内容概要:本文详细介绍了如何使用MATLAB及其优化工具箱,通过混合整数规划(MILP)方法对微网电池储能系统的容量进行优化配置。主要内容包括定义目标函数(如最小化运行成本),设置约束条件(如充放电功率限制、能量平衡约束),并引入决策变量(如电池容量、充放电功率和状态)。文中提供了具体的MATLAB代码示例,演示了如何将实际问题转化为数学模型并求解。此外,还讨论了一些实用技巧,如避免充放电互斥冲突、考虑电池寿命损耗等。 适用人群:从事微电网设计与运维的技术人员,尤其是那些希望通过优化算法提高系统性能和经济效益的专业人士。 使用场景及目标:适用于需要确定最佳电池储能容量的微电网项目,旨在降低总体运行成本,提高系统的稳定性和可靠性。具体应用场景包括工业园区、商业建筑或其他分布式能源系统。 其他说明:文章强调了模型的实际应用价值,并指出通过精确控制充放电策略可以显著减少不必要的容量闲置,从而节省大量资金。同时提醒读者注意模型的时间粒度选择、电池退化成本等因素的影响。

    langchain4j-ollama-1.0.0-beta1.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    光伏离网并网逆变器设计:基于TMS320F28335的数字控制与SPWM技术详解

    内容概要:本文详细介绍了基于TMS320F28335的光伏离网并网逆变器设计方案,涵盖了从硬件架构到软件控制的各个方面。首先,文章阐述了TMS320F28335作为高性能DSP的优势及其初始化配置方法。其次,探讨了逆变器的数字控制策略,如双闭环控制(电压外环和电流内环)的具体实现方式。然后,深入讲解了SPWM(正弦脉宽调制)技术,包括SPWM波的生成方法和相关代码示例。此外,还讨论了硬件保护逻辑、过流检测、死区时间配置等实际应用中的注意事项。最后,提供了调试经验和学习资源建议。 适合人群:从事光伏逆变器设计、嵌入式系统开发的技术人员,尤其是有一定DSP编程基础的研发人员。 使用场景及目标:适用于需要深入了解光伏逆变器设计原理和技术实现的研究人员和工程师。主要目标是掌握基于TMS320F28335的逆变器控制系统设计,包括数字控制策略和SPWM技术的应用。 其他说明:文中提供的代码示例和实践经验有助于读者更好地理解和应用于实际项目中。建议读者结合TI官方提供的学习资料进行进一步学习和实践。

    【医疗影像分析】深度学习技术在医疗影像分析中的应用优势及未来发展方向:自动特征学习、高精度高效处理、多模态数据融合、个性化治疗与预测、实时远程支持

    内容概要:深度学习在医疗影像分析中展现出显著的优势,主要体现在自动特征学习、高准确性和效率、多模态数据融合与综合分析、个性化治疗与预测、减少主观性、处理复杂和高维数据、实时分析与远程医疗支持、数据挖掘与科研突破以及可扩展性与持续优化九个方面。通过卷积神经网络(CNN)、U-Net等模型,深度学习能够自动从影像中提取多层次特征,无需手动干预,在分类、分割任务中表现出色,处理速度远超人工。此外,它还能够整合多源数据,提供全面的诊断依据,实现个性化治疗建议,减少误诊和漏诊,支持实时分析和远程医疗,挖掘病理模式并加速研究,同时具有可扩展性和持续优化的能力。; 适合人群:医疗行业从业者、科研人员、计算机视觉和深度学习领域的研究人员。; 使用场景及目标:①用于医疗影像的自动特征提取和分类,如乳腺癌筛查、皮肤癌诊断等;②整合多模态数据,如CT、MRI等,提高诊断准确性;③提供个性化治疗建议,优化治疗方案;④支持实时分析和远程医疗,尤其适用于偏远地区的急诊场景;⑤挖掘病理模式,加速疾病机制的研究。; 其他说明:深度学习正逐渐成为医疗影像分析的核心诊断伙伴,未来发展方向包括增强可解释性、保护数据隐私和轻量化部署,旨在进一步提升医疗效率和患者护理质量。

    深度学习机器学习子领域关键技术解析:神经网络基础、常见架构及应用场景综述

    内容概要:深度学习是机器学习的一个子领域,通过构建多层次的“深度神经网络”来模拟人脑结构,从而学习和提取数据的复杂特征。文章介绍了深度学习的核心概念,包括神经元、多层感知机、深度神经网络(DNN)、卷积神经网络(CNN)、循环神经网络(RNN)和Transformer等常见网络结构。同时,详细讲解了激活函数、损失函数与优化器的作用。此外,还探讨了深度学习的关键突破,如大数据与算力的支持、正则化技术和迁移学习的应用。文中列举了深度学习在计算机视觉、自然语言处理、语音与音频以及强化学习等领域的应用场景,并指出了其面临的挑战,如数据依赖、计算成本和可解释性问题。最后提供了使用PyTorch和TensorFlow/Keras框架的经典代码示例,涵盖图像分类、文本生成和迁移学习等内容。; 适合人群:对机器学习有一定了解,希望深入学习深度学习理论和技术的研究人员、工程师及学生。; 使用场景及目标:①理解深度学习的基本原理和核心概念;②掌握常见深度学习框架的使用方法,如PyTorch和TensorFlow;③能够根据具体应用场景选择合适的网络结构和算法进行实践。; 其他说明:本文不仅提供了理论知识,还附带了详细的代码示例,便于读者动手实践。建议读者结合理论与实践,逐步深入理解深度学习的各个方面。

    深度学习答辩PPT案例展示

    适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考

    tokenizers-0.22.1.jar中文-英文对照文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    能源领域:基于MATLAB的阶梯式碳交易与供需灵活双响应综合能源系统优化调度

    内容概要:本文详细介绍了考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度方法。在供给侧,引入了有机朗肯循环(ORC)实现热电联产机组的灵活响应;在需求侧,提出电、热、气负荷之间的可替代性,以提高能源利用效率。构建了以最小化碳排放成本、购能成本、弃风成本和需求响应成本为目标的优化调度模型,并采用MATLAB和CPLEX进行了模型构建和求解。文中提供了具体的代码示例,展示了如何处理热电耦合、负荷替代和阶梯式碳交易等问题。 适合人群:从事能源系统优化、电力系统调度、碳交易等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要优化能源系统调度、降低成本并减少碳排放的实际应用场景。目标是帮助读者理解和掌握如何通过先进的技术和算法实现更加灵活和高效的能源调度。 其他说明:文章提供了完整的代码实现和服务支持,包括12种典型场景的数据集和预设模型,方便读者快速上手实践。

Global site tag (gtag.js) - Google Analytics