- 浏览: 960227 次
- 性别:
- 来自: 魔都
文章分类
- 全部博客 (745)
- MultiThread (19)
- My Plan (118)
- JavaBasic (61)
- MyInterview (104)
- InternetTechnique (5)
- ProjectConclusion (1)
- Maven (5)
- MogoDb (5)
- Hadoop (11)
- Memcached (6)
- TechniqueCollect (1)
- Ibaits (1)
- Android (34)
- ItLife (40)
- Tree (2)
- ProjectArchitect (7)
- Open Source (3)
- liunx (5)
- socket (8)
- Spring (27)
- DesginPattern (35)
- WebBasic (13)
- English (13)
- structs (1)
- structs2 (2)
- Oracle (17)
- Hibernate (2)
- JavaScript (4)
- Jdbc (1)
- Jvm (15)
- Ibatis (1)
- DataStructures (13)
- Https/Socket/Tcp/Ip (3)
- Linux (4)
- Webservice (7)
- Io (2)
- Svn (1)
- Css (1)
- Ajax (1)
- ExtJs (1)
- UML (2)
- DataBase (6)
- BankTechnique (3)
- SpringMvc (3)
- Nio (3)
- Load Balancing/Cluster (3)
- Tools (1)
- javaPerformanceOptimization (8)
- Lucene(SEO) (1)
- My Think (80)
- NodeJs (1)
- Quartz (1)
- Distributed-java (1)
- MySql (7)
- Project (4)
- junit (4)
- framework (1)
- enCache (1)
- git (2)
- SCJP (1)
- sd (1)
最新评论
-
lkjxshi:
你都这水平了还考这个证干嘛
SCJP 认证考试指南 -
钟逸华:
问的真多
百度java开发面试题(转) -
zuimeitulip:
觉得我就是这样的,从小阅读量就很少,导致现在的读的速度非常慢, ...
让读书成为一种习惯 -
DDT_123456:
我觉得你是不符合要求。问你hashmap的那个问题,你那样回答 ...
阿里面试2(转) -
jingjing0907:
刚刚写了很多读过此博客的感受,竟然没有发上去,以为我注册账号还 ...
让读书成为一种习惯
原文地址:http://blog.csdn.net/calvinxiu/archive/2007/02/09/1506112.aspx
Hadoop 是Google MapReduce 的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同java程序员可 以不考虑内存泄露一样, MapReduce的run-time系统会解决输入数据的分布细节,跨越机器集群的程序执行调度,处理机器的失效,并且管理机器之间的通讯请求。这样的 模式允许程序员可以不需要有什么并发处理或者分布式系统的经验,就可以处理超大的分布式系统得资源。
一、概论
作为Hadoop程序员,他要做的事情就是:
1、定义Mapper,处理输入的Key-Value对,输出中间结果。
2、定义Reducer,可选,对中间结果进行规约,输出最终结果。
3、定义InputFormat 和OutputFormat,可选,InputFormat将每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。
4、定义main函数,在里面定义一个Job并运行它。
然后的事情就交给系统了。
1.基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作为文件系统的负责调度运行在master,DataNode运行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作为MapReduce的总调度运行在master,TaskTracker则运行在每个机器上执行Task。
2.main()函数,创建JobConf,定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker,等待Job结束。
3.JobTracker,创建一个InputFormat的实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作为Mapper task 的输入,生成Mapper task加入Queue。
4.TaskTracker 向 JobTracker索求下一个Map/Reduce。
Mapper Task先从InputFormat创建RecordReader,循环读入FileSplits的内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile.
Reducer Task 从运行Mapper的TaskTracker的Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照OutputFormat写入结果目录。
TaskTracker 每10秒向JobTracker报告一次运行情况,每完成一个Task10秒后,就会向JobTracker索求下一个Task。
Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop 。
二、程序员编写的代码
我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。
package demo.hadoop
public class HadoopGrep {
public static class RegMapper extends MapReduceBase implements Mapper {
private Pattern pattern;
public void configure(JobConf job) {
pattern = Pattern.compile(job.get( " mapred.mapper.regex " ));
}
public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)
throws IOException {
String text = ((Text) value).toString();
Matcher matcher = pattern.matcher(text);
if (matcher.find()) {
output.collect(key, value);
}
}
}
private HadoopGrep () {
} // singleton
public static void main(String[] args) throws Exception {
JobConf grepJob = new JobConf(HadoopGrep. class );
grepJob.setJobName( " grep-search " );
grepJob.set( " mapred.mapper.regex " , args[ 2 ]);
grepJob.setInputPath( new Path(args[ 0 ]));
grepJob.setOutputPath( new Path(args[ 1 ]));
grepJob.setMapperClass(RegMapper. class );
grepJob.setReducerClass(IdentityReducer. class );
JobClient.runJob(grepJob);
}
}
RegMapper类的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。
main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类,运行Job。
整个代码非常简单,丝毫没有分布式编程的任何细节。
三.运行Hadoop程序
Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop 与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:
3.1 local运行模式
完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合一开始做调试代码。
解压hadoop,其中conf目录是配置目录,hadoop的配置文件在hadoop-default.xml,如果要修改配置,不是直接修改该文件,而是修改hadoop-site.xml,将该属性在hadoop-site.xml里重新赋值。
hadoop-default.xml的默认配置已经是local运行,不用任何修改,配置目录里唯一必须修改的是hadoop-env.sh 里JAVA_HOME 的位置。
将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录 找一个比较大的log文件放入一个目录,然后运行
hadoop / bin / hadoop demo.hadoop.HadoopGrep log文件所在目录 任意的输出目录 grep的字符串
查看输出目录的结果,查看hadoop/logs/里的运行日志。
在重新运行前,先删掉输出目录。
3.2 单机集群运行模式
现在来搞一下只有单机的集群.假设以完成3.1中的设置,本机名为hadoopserver
第1步. 然后修改hadoop-site.xml ,加入如下内容:
< property >
< name > fs.default.name </ name >
< value > hadoopserver:9000 </ value >
</ property >
< property >
< name > mapred.job.tracker </ name >
< value > hadoopserver:9001 </ value >
</ property >
< property >
< name > dfs.replication </ name >
< value > 1 </ value >
</ property >
从此就将运行从local文件系统转向了hadoop的hdfs系统,mapreduce的jobtracker也从local的进程内操作变成了分布式的任务系统,9000,9001两个端口号是随便选择的两个空余端口号。
另外,如果你的/tmp目录不够大,可能还要修改hadoop.tmp.dir属性。
第2步. 增加ssh不输入密码即可登陆。
因为Hadoop需要不用输入密码的ssh来进行调度,在不su的状态下,在自己的home目录运行ssh-keygen -t rsa ,然后一路回车生成密钥,再进入.ssh目录,cp id_rsa.pub authorized_keys
详细可以man 一下ssh, 此时执行ssh hadoopserver,不需要输入任何密码就能进入了。
3.格式化namenode,执行
bin/hadoop namenode -format
4.启动Hadoop
执行hadoop/bin/start-all.sh, 在本机启动namenode,datanode,jobtracker,tasktracker
5.现在将待查找的log文件放入hdfs,。
执行hadoop/bin/hadoop dfs 可以看到它所支持的文件操作指令。
执行hadoop/bin/hadoop dfs put log文件所在目录 in ,则log文件目录已放入hdfs的/user/user-name/in 目录中
6.现在来执行Grep操作
hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
查看hadoop/logs/里的运行日志,重新执行前。运行hadoop/bin/hadoop dfs rmr out 删除out目录。
7.运行hadoop/bin/stop-all.sh 结束
3.3 集群运行模式
假设已执行完3.2的配置,假设第2台机器名是hadoopserver2
1.创建与hadoopserver同样的执行用户,将hadoop解压到相同的目录。
2.同样的修改haoop-env.sh中的JAVA_HOME 及修改与3.2同样的hadoop-site.xml
3. 将hadoopserver中的/home/username/.ssh/authorized_keys 复制到hadoopserver2,保证hadoopserver可以无需密码登陆hadoopserver2
scp /home/username/.ssh/authorized_keys username@hadoopserver2:/home/username/.ssh/authorized_keys
4.修改hadoop-server的hadoop/conf/slaves文件, 增加集群的节点,将localhost改为
hadoop-server
hadoop-server2
5.在hadoop-server执行hadoop/bin/start-all.sh
将会在hadoop-server启动namenode,datanode,jobtracker,tasktracker
在hadoop-server2启动datanode 和tasktracker
6.现在来执行Grep操作
hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
重新执行前,运行hadoop/bin/hadoop dfs rmr out 删除out目录
7.运行hadoop/bin/stop-all.sh 结束。
四、效率
经测试,Hadoop并不是万用灵丹,很取决于文件的大小和数量,处理的复杂度以及群集机器的数量,相连的带宽,当以上四者并不大时,hadoop优势并不明显。
比如,不用hadoop用java写的简单grep函数处理100M的log文件只要4秒,用了hadoop local的方式运行是14秒,用了hadoop单机集群的方式是30秒,用双机集群10M网口的话更慢,慢到不好意思说出来的地步。
Hadoop 是Google MapReduce 的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同java程序员可 以不考虑内存泄露一样, MapReduce的run-time系统会解决输入数据的分布细节,跨越机器集群的程序执行调度,处理机器的失效,并且管理机器之间的通讯请求。这样的 模式允许程序员可以不需要有什么并发处理或者分布式系统的经验,就可以处理超大的分布式系统得资源。
一、概论
作为Hadoop程序员,他要做的事情就是:
1、定义Mapper,处理输入的Key-Value对,输出中间结果。
2、定义Reducer,可选,对中间结果进行规约,输出最终结果。
3、定义InputFormat 和OutputFormat,可选,InputFormat将每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。
4、定义main函数,在里面定义一个Job并运行它。
然后的事情就交给系统了。
1.基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作为文件系统的负责调度运行在master,DataNode运行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作为MapReduce的总调度运行在master,TaskTracker则运行在每个机器上执行Task。
2.main()函数,创建JobConf,定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker,等待Job结束。
3.JobTracker,创建一个InputFormat的实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作为Mapper task 的输入,生成Mapper task加入Queue。
4.TaskTracker 向 JobTracker索求下一个Map/Reduce。
Mapper Task先从InputFormat创建RecordReader,循环读入FileSplits的内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile.
Reducer Task 从运行Mapper的TaskTracker的Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照OutputFormat写入结果目录。
TaskTracker 每10秒向JobTracker报告一次运行情况,每完成一个Task10秒后,就会向JobTracker索求下一个Task。
Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop 。
二、程序员编写的代码
我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。
package demo.hadoop
public class HadoopGrep {
public static class RegMapper extends MapReduceBase implements Mapper {
private Pattern pattern;
public void configure(JobConf job) {
pattern = Pattern.compile(job.get( " mapred.mapper.regex " ));
}
public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)
throws IOException {
String text = ((Text) value).toString();
Matcher matcher = pattern.matcher(text);
if (matcher.find()) {
output.collect(key, value);
}
}
}
private HadoopGrep () {
} // singleton
public static void main(String[] args) throws Exception {
JobConf grepJob = new JobConf(HadoopGrep. class );
grepJob.setJobName( " grep-search " );
grepJob.set( " mapred.mapper.regex " , args[ 2 ]);
grepJob.setInputPath( new Path(args[ 0 ]));
grepJob.setOutputPath( new Path(args[ 1 ]));
grepJob.setMapperClass(RegMapper. class );
grepJob.setReducerClass(IdentityReducer. class );
JobClient.runJob(grepJob);
}
}
RegMapper类的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。
main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类,运行Job。
整个代码非常简单,丝毫没有分布式编程的任何细节。
三.运行Hadoop程序
Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop 与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:
3.1 local运行模式
完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合一开始做调试代码。
解压hadoop,其中conf目录是配置目录,hadoop的配置文件在hadoop-default.xml,如果要修改配置,不是直接修改该文件,而是修改hadoop-site.xml,将该属性在hadoop-site.xml里重新赋值。
hadoop-default.xml的默认配置已经是local运行,不用任何修改,配置目录里唯一必须修改的是hadoop-env.sh 里JAVA_HOME 的位置。
将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录 找一个比较大的log文件放入一个目录,然后运行
hadoop / bin / hadoop demo.hadoop.HadoopGrep log文件所在目录 任意的输出目录 grep的字符串
查看输出目录的结果,查看hadoop/logs/里的运行日志。
在重新运行前,先删掉输出目录。
3.2 单机集群运行模式
现在来搞一下只有单机的集群.假设以完成3.1中的设置,本机名为hadoopserver
第1步. 然后修改hadoop-site.xml ,加入如下内容:
< property >
< name > fs.default.name </ name >
< value > hadoopserver:9000 </ value >
</ property >
< property >
< name > mapred.job.tracker </ name >
< value > hadoopserver:9001 </ value >
</ property >
< property >
< name > dfs.replication </ name >
< value > 1 </ value >
</ property >
从此就将运行从local文件系统转向了hadoop的hdfs系统,mapreduce的jobtracker也从local的进程内操作变成了分布式的任务系统,9000,9001两个端口号是随便选择的两个空余端口号。
另外,如果你的/tmp目录不够大,可能还要修改hadoop.tmp.dir属性。
第2步. 增加ssh不输入密码即可登陆。
因为Hadoop需要不用输入密码的ssh来进行调度,在不su的状态下,在自己的home目录运行ssh-keygen -t rsa ,然后一路回车生成密钥,再进入.ssh目录,cp id_rsa.pub authorized_keys
详细可以man 一下ssh, 此时执行ssh hadoopserver,不需要输入任何密码就能进入了。
3.格式化namenode,执行
bin/hadoop namenode -format
4.启动Hadoop
执行hadoop/bin/start-all.sh, 在本机启动namenode,datanode,jobtracker,tasktracker
5.现在将待查找的log文件放入hdfs,。
执行hadoop/bin/hadoop dfs 可以看到它所支持的文件操作指令。
执行hadoop/bin/hadoop dfs put log文件所在目录 in ,则log文件目录已放入hdfs的/user/user-name/in 目录中
6.现在来执行Grep操作
hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
查看hadoop/logs/里的运行日志,重新执行前。运行hadoop/bin/hadoop dfs rmr out 删除out目录。
7.运行hadoop/bin/stop-all.sh 结束
3.3 集群运行模式
假设已执行完3.2的配置,假设第2台机器名是hadoopserver2
1.创建与hadoopserver同样的执行用户,将hadoop解压到相同的目录。
2.同样的修改haoop-env.sh中的JAVA_HOME 及修改与3.2同样的hadoop-site.xml
3. 将hadoopserver中的/home/username/.ssh/authorized_keys 复制到hadoopserver2,保证hadoopserver可以无需密码登陆hadoopserver2
scp /home/username/.ssh/authorized_keys username@hadoopserver2:/home/username/.ssh/authorized_keys
4.修改hadoop-server的hadoop/conf/slaves文件, 增加集群的节点,将localhost改为
hadoop-server
hadoop-server2
5.在hadoop-server执行hadoop/bin/start-all.sh
将会在hadoop-server启动namenode,datanode,jobtracker,tasktracker
在hadoop-server2启动datanode 和tasktracker
6.现在来执行Grep操作
hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
重新执行前,运行hadoop/bin/hadoop dfs rmr out 删除out目录
7.运行hadoop/bin/stop-all.sh 结束。
四、效率
经测试,Hadoop并不是万用灵丹,很取决于文件的大小和数量,处理的复杂度以及群集机器的数量,相连的带宽,当以上四者并不大时,hadoop优势并不明显。
比如,不用hadoop用java写的简单grep函数处理100M的log文件只要4秒,用了hadoop local的方式运行是14秒,用了hadoop单机集群的方式是30秒,用双机集群10M网口的话更慢,慢到不好意思说出来的地步。
发表评论
-
hadoop常见错误及解决办法!
2015-05-26 22:13 3701转: http://p-x1984.iteye.com/b ... -
Hadoop技术一句话介绍
2015-03-18 11:36 1036Hadoop 是一种分布式系统的平台,通过它可以很轻松的搭 ... -
hadoop面试题
2015-01-13 15:56 19041、说说你们公司的hadoop项目? 2、你们项目的集 ... -
hadoop的常用命令指南
2015-01-05 16:27 2262目录[-] 1.start-all.sh开启线 ... -
hadoop配置、运行错误总结
2014-12-23 16:49 1331新手搞hadoop最头疼各种 ... -
Hadoop常见问题及解决办法
2014-12-23 16:47 8251:Shuffle Error: Exceeded MAX_F ... -
给大家分享几节hadoop视频教程
2013-01-31 21:45 1420给大家分享几节hadoop视频教程 第一节:点击 ... -
Hadoop入门专家引导
2012-07-30 23:22 1255Hadoop你是否了解,本文就像大家简单Hadoop入门知识, ... -
Hadoop 实践入门
2012-07-30 23:09 8591 实验环 ... -
Hadoop学习目录
2012-07-26 22:54 1237如果你想在这三年内富的流油,Hadoop技术绝对是个不错的选择 ...
相关推荐
【Hadoop入门教程】 Hadoop是一个开源的分布式计算框架,主要设计用于处理和存储大量数据。这个教程将指导你如何在Ubuntu 12.04操作系统上安装和配置Hadoop 1.0.4,这对于初学者来说是一个很好的起点。 **1. 安装...
【Hadoop 入门】 Hadoop 是一个由Apache基金会开发的开源分布式计算框架,它以其高效、可扩展和容错性著称,是大数据处理领域的重要工具。本篇将从Hadoop的基本流程、应用开发以及集群配置和使用技巧三个方面进行...
Hadoop是一个广泛使用的分布式数据处理框架,特别适合于处理大规模数据集。它最初是作为搜索引擎的核心数据缩减功能,但由于其架构设计为...而《Hadoop入门经典书籍》这类资料,对于新手来说,是非常有价值的入门参考。
"Hadoop入门到精通"的学习资料旨在帮助初学者掌握这一强大的框架,并逐步晋升为专家。以下是对Hadoop及其相关概念的详细解读。 一、Hadoop概述 Hadoop是由Apache基金会开发的一个开源框架,主要用于处理和存储大...
Hadoop入门手册 简单入门Hadoop入门手册 简单入门Hadoop入门手册 简单入门Hadoop入门手册 简单入门
《Hadoop入门实战手册》是一本专为初学者设计的中文版指南,旨在帮助读者快速掌握Hadoop这一分布式计算框架的基础知识和实际操作技巧。Hadoop是Apache软件基金会的一个开源项目,它为海量数据处理提供了可靠的分布式...
这个“Hadoop入门程序java源码”是为初学者准备的,目的是帮助他们快速掌握如何在Hadoop环境中编写和运行Java程序。Hadoop的主要组件包括HDFS(Hadoop分布式文件系统)和MapReduce,这两个部分将在下面详细介绍。 ...
总之,Hadoop入门教程为初学者提供了对Hadoop核心概念的理解,帮助他们掌握如何安装和使用Hadoop进行数据存储与处理,并理解Hadoop的设计思想和体系架构。通过学习Hadoop,初学者可以入门到大数据处理的广阔天地中,...
本教程《Hadoop入门教程》旨在为初学者提供全面且深入的指导,帮助他们快速理解并掌握Hadoop的基本概念、架构及应用。教程由Hadoop技术论坛在2010年出版,为当时的开发者提供了宝贵的资源。 一、Hadoop简介 Hadoop...
hadoop的入门书籍,本人认为一共有以下五本书比较好: 1.云计算资料大全(了解云计算者必读).pdf 2.Hadoop开发者入门专刊 3.Hadoop权威指南%28第2版%29中文版 4.hadoop实战中文版+电子版pdf 5.精通HADOOP 由于上传...
【Hadoop入门手册】是一本专为初学者设计的指南,旨在帮助读者快速掌握Hadoop这一分布式计算框架的基础知识和核心概念。Hadoop是Apache软件基金会的一个开源项目,它的出现解决了大数据处理中的诸多挑战,包括数据...
hadoop入门学习 mapreduce求解 天气数据 2002年整年数据的最高气温
### Hadoop入门学习文档知识点梳理 #### 一、大数据概论 ##### 1.1 大数据概念 - **定义**:大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。 - **特点**: - **Volume(大量)...
【Hadoop入门教程】 本文将带你逐步了解如何在Ubuntu虚拟机中安装配置Hadoop,并使用Eclipse进行Hadoop程序开发。教程适用于初学者,旨在帮助你快速掌握Hadoop的基础知识。 1. **JDK安装与配置** 在开始Hadoop的...
【标题】"Hadoop入门共21页.pdf.zip" 提供了一个初步了解和学习Hadoop分布式文件系统(HDFS)和MapReduce计算模型的基础教程。Hadoop是大数据处理领域的一个核心框架,它允许用户在廉价硬件集群上存储和处理海量数据...
Hadoop入门中文手册 目的是帮助你快速完成单机上的Hadoop安装与使用以便你对Hadoop分布式文件系统(HDFS)和Map-Reduce框架有所体会,比如在HDFS上运行示例程序或简单作业等,同样也介绍了Hive,HBase详细安装应用! ...