C语言位操作(转)
在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。C语言提供了位运算的功能, 这使得C语言也能像汇编语言一样用来编写系统程序。
位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码) 00000001 (1的二进制补码)可见9&5=1。
按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为0000000011111111)。
应用:
a. 清零特定位 (mask中特定位置0,其它位为1,s=s&mask)
b. 取某数中指定位 (mask中特定位置1,其它位为0,s=s&mask)
2. 按位或运算 按位或运算符“|”是双目运算符。其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。
例如:9|5可写算式如下:
00001001|00000101
00001101 (十进制为13)可见9|5=13
应用:
常用来将源操作数某些位置1,其它位不变。 (mask中特定位置1,其它位为0 s=s|mask)
3. 按位异或运算 按位异或运算符“^”是双目运算符。其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。参与运算数仍以补码出现,例如9^5可写成算式如下:
00001001^00000101 00001100 (十进制为12)
应用:
a. 使特定位的值取反 (mask中特定位置1,其它位为0 s=s^mask)
b. 不引入第三变量,交换两个变量的值 (设 a=a1,b=b1)
目 标 操 作 操作后状态
a=a1^b1 a=a^b a=a1^b1,b=b1
b=a1^b1^b1 b=a^b a=a1^b1,b=a1
a=b1^a1^a1 a=a^b a=b1,b=a1
4. 求反运算 求反运算符~为单目运算符,具有右结合性。 其功能是对参与运算的数的各二进位按位求反。例如~9的运算为: ~(0000000000001001)结果为:1111111111110110
5. 左移运算 左移运算符“<<”是双目运算符。其功能把“<< ”左边的运算数的各二进位全部左移若干位,由“<<”右边的数指定移动的位数, 高位丢弃,低位补0。 其值相当于乘2。例如: a<<4 指把a的各二进位向左移动4位。如a=00000011(十进制3),左移4位后为00110000(十进制48)。
6. 右移运算 右移运算符“>>”是双目运算符。其功能是把“>> ”左边的运算数的各二进位全部右移若干位,“>>”右边的数指定移动的位数。其值相当于除2。
例如:设 a=15,a>>2 表示把000001111右移为00000011(十进制3)。对于左边移出的空位,如果是正数则空位补0,若为负数,可能补0或补1,这取决于所用的计算机系统。移入0的叫逻辑右移,移入1的叫算术右移,Turbo C采用逻辑右移。
main(){
unsigned a,b;
printf("input a number: ");
scanf("%d",&a);
b=a>>5;
b=b&15;
printf("a=%d b=%d ",a,b);
}
再看一例:
main(){
char a='a',b='b';
int p,c,d;
p=a;
p=(p<<8)|b;
d=p&0xff;
c=(p&0xff00)>>8;
printf("a=%d b=%d c=%d d=%d ",a,b,c,d);
}
浮点数的存储格式:
浮点数的存储格式是符号+阶码(定点整数)+尾数(定点小数)
SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
即1位符号位(0为正,1为负),8位指数位,23位尾数位
浮点数存储前先转化成2的k次方形式,即:
f = A1*2^k + A2*2^(k-1) + ... + Ak +... +An*2^(-m) (Ai = {0, 1}, A1 = 1)
如5.5=2^2 + 2^0 + 2^(-1)
其中的k就是指数,加127后组成8位指数位
5.5的指数位就是2+127 = 129 = 10000001
A2A3.....An就是尾数位,不足23位后补0
所以5.5 = 01000000101000000000000000000000 = 40A00000
所以,对浮点数*2、/2只要对8位符号位+、- 即可,但不是左移、右移
关于unsigned int 和 int 的在位运算上的不同,下面有个CU上的例子描述的很清楚:
[问题]:这个函数有什么问题吗?
/////////////////////////////////////////////////
/**
* 本函数将两个16比特位的值连结成为一个32比特位的值。
* 参数:sHighBits 高16位
* sLowBits 低16位
* 返回:32位值
**/
long CatenateBits16(short sHighBits, short sLowBits)
{
long lResult = 0; /* 32位值的临时变量*/
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits;
return lResult;
}
/////////////////////////////////////////////////
[问题的发现]:
我们先看如下测试代码:
/////////////////////////////////////////////////
int main()
{
short sHighBits1 = 0x7fff;
short sHighBits2 = 0x8f12;
unsigned short usHighBits3 = 0xff12;
short sLowBits1 = 0x7bcd;
long lResult = 0;
printf("[sHighBits1 + sLowBits1] ";
lResult = CatenateBits16(sHighBits1, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
}
/////////////////////////////////////////////////
运行结果为:
[sHighBits1 + sLowBits1]
lResult = 7fff7bcd
lResult = 8f127bcd
lResult = ff127bcd
嗯,运行很正确嘛……于是我们就放心的在自己的程序中使用起这个函数来了。
可是忽然有一天,我们的一个程序无论如何结果都不对!经过n个小时的检查和调试,最后终于追踪到……CatenateBits16() !?它的返回值居然是错的!!
“郁闷!”你说,“这个函数怎么会有问题呢!?”
可是,更郁闷的还在后头呢,因为你把程序中的输入量作为参数,在一个简单的main()里面单步调试:
/////////////////////////////////////////////////
int main()
{
short sHighBits1 = 0x7FFF;
short sHighBits2 = 0x8F12;
unsigned short usHighBits3 = 0x8F12;
short sLowBits1 = 0x7BCD; //你实际使用的参数
short sLowBits2 = 0x8BCD; //你实际使用的参数
long lResult = 0;
printf("[sHighBits1 + sLowBits1] ";
lResult = CatenateBits16(sHighBits1, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits1);
printf("lResult = %08x ", lResult, lResult);
printf(" [sHighBits1 + sLowBits2] ";
lResult = CatenateBits16(sHighBits1, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(sHighBits2, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
lResult = CatenateBits16(usHighBits3, sLowBits2);
printf("lResult = %08x ", lResult, lResult);
return 0;
}
/////////////////////////////////////////////////
发现结果竟然是:
[sHighBits1 + sLowBits1]
lResult = 7fff7bcd
lResult = 8f127bcd
lResult = 8f127bcd
[sHighBits1 + sLowBits2]
lResult = ffff8bcd //oops!
lResult = ffff8bcd //oops!
lResult = ffff8bcd //oops!
前一次还好好的,后一次就ffff了?X档案?
[X档案的真相]:
注意那两个我们用来当作低16位值的sLowBits1和sLowBits2。
已知:
使用 sLowBits1 = 0x7bcd 时,函数返回正确的值;
使用 sLowBits2 = 0x8bcd 时,函数中发生X档案。
那么,sLowBits1与sLowBits2有什么区别?
注意了,sLowBits1和sLowBits2都是short型(而不是unsigned short),所以在这里,sLowBits1代表一个正数值,而sLowBits2却代表了一个负数值(因为8即是二进制1000,sLowBits2最高位是1)。
再看CatenateBits16()函数:
/////////////////////////////////////////////////
long CatenateBits16(short sHighBits, short sLowBits)
{
long lResult = 0; /* 32位值的临时变量*/
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits; //注意这一句!!!!
return lResult;
}
/////////////////////////////////////////////////
如果我们在函数中用
printf("sLowBits = %04x ", sLowBits);
打印传入的sLowBits值,会发现
sLowBits = 0x7bcd 时,打印结果为
sLowBits = 7bcd
而sLowBits = 0x8bcd时,打印结果为
sLowBits = ffff8bcd
是的,即使用%04x也打印出8位十六进制。
因此,我们看出来了:
当sLowBits = 0x8bcd时,函数中 "lResult |= (long)sLowBits;" 这一句执行,会先将sLowBits转换为
0xffff8bcd
再与lResult做或运算。由于现在lResult的值为 0xXXXX0000 (其中XXXX是任何值),所以显然,无论sHighBits是什么值,最后结果都会是
0xffff8bcd
而当sLowBits = 0x7bcd时,函数中 "lResult |= (long)sLowBits;" 这一句执行,会先将sLowBits转换为
0x00007bcd
再与lResult做或运算。这样做或运算出来的结果当然就是对的。
也就是说,CatenateBits16()在sLowBits的最高位为0的时候表现正常,而在最高位为1的时候出现偏差。
[教训:在某些情况下作位运算和位处理的时候,考虑使用无符号数值——因为这个时候往往不需要处理符号。即使你需要的有符号的数值,那么也应该考虑自行在调用CatenateBits16()前后做转换——毕竟在位处理中,有符号数值相当诡异!]
下面这个CatenateBits16()版本应该会好一些:
/////////////////////////////////////////////////
unsigned long CatenateBits16(unsigned short sHighBits, unsigned short sLowBits)
{
long lResult = 0;
/* 将第一个16位值放入32位值的高16位 */
lResult = sHighBits;
lResult <<= 16;
/* 清除32位值的低16位 */
lResult &= 0xFFFF0000;
/* 将第二个16位值放入32位值的低16位 */
lResult |= (long)sLowBits & 0x0000FFFF;
return lResult;
}
/////////////////////////////////////////////////
注意其中的 "lResult |= (long)sLowBits & 0x0000FFFF;"。事实上,现在即使我们把CatenateBits16()函数的参数(特别是sLowBits)声明为short,结果也会是对的。
|
相关推荐
本文给大家分享了单片机C语言位操作实例。
C语言中的位操作是编程中的一个基础且强大的工具,它涉及到计算机硬件层面的二进制数据处理。在C语言中,位操作允许我们直接对内存中的位进行读写,这在处理硬件寄存器、节省存储空间或者进行高效计算时非常有用。...
嵌入式C语言位操作的移植与优化 嵌入式系统中,C语言位操作的移植与优化是非常重要的。单片机的应用越来越广泛,种类也越来越多。嵌入式C语言的可读性强、移植性好,能够大大减轻软件工程师的劳动强度,因而越来越...
关于C语言位操作,左移时总是移位和补零。右移时无符号数是移位和补零,此时称为逻辑右移;而有符号数大多数情况下是移位和补最左边的位(也就是补最高有效位),移几位就补几位,此时称为算术右移。
C语言_位操作,如何判断某一位是1还是0
了解这些基本的C语言位操作和宏函数使用方法后,开发者可以更有效地编写控制ARM处理器的代码,如配置中断、控制外设状态、优化内存访问等。熟悉这些操作对于嵌入式系统开发人员来说是至关重要的,因为它们直接影响到...
基于C语言实现64位操作系统的设计与实现源码.zip基于C语言实现64位操作系统的设计与实现源码.zip基于C语言实现64位操作系统的设计与实现源码.zip基于C语言实现64位操作系统的设计与实现源码.zip基于C语言实现64位...
逆序输出三位数的实验则是对学生理解C语言位操作能力的考验。通过连续的取余和除法操作,学生可以分别获取个位、十位和百位数字,再通过字符串拼接或数学运算的方式实现数字的逆序。这一实验有助于学生在掌握基本的...
本文将详细介绍C语言的底层操作,包括移位操作、位段结构、字节对齐等。 一、移位操作 移位操作是C语言中的一种基本操作,它可以将变量中的每一位向右或向左移动。右移操作符是>>,左移操作符是。例如,a >> 2 将...
2. **接近硬件**:C语言提供了对内存地址和位操作的直接控制,使其非常适合硬件级编程。 3. **可移植性**:C语言编写的程序可以在不同的操作系统和硬件平台上编译和运行,具有很好的可移植性。 4. **丰富的库支持**...
关于C语言的课件,关于位运算和预处理命令。
C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程开发中用好位操作符C语言编程...
1. 数据预处理:将输入的整数转化为字符串,方便逐位操作。 2. 数位提取:遍历每个数字的每一位,存储每个位上的数字出现的次数。 3. 位值计算:根据每位数字的出现次数生成新的数组索引,确定每个数字在新数组中的...
内容概要:本文详细介绍了C语言中的枚举类型和位操作两大高级特性。首先,文中讲解了枚举类型的定义、使用及其隐式转换规则,并通过具体示例说明了枚举成员的赋值与自动增量。接着,文章深入探讨了位操作符的基本...
给C语言增加几个位操作函数.pdf给C语言增加几个位操作函数.pdf
位操作是C语言中一项强大的特性,它允许程序员在二进制层面上操作数据。通过熟练使用位操作,程序员可以提高程序的执行效率,实现对硬件的精细控制,以及在资源受限的环境中进行高效的数据存储和处理。随着技术的...
2. 丰富的运算符:C语言提供了34种运算符,包括算术、关系、逻辑、位操作等,能够处理各种复杂的计算需求。 3. 多样化的数据类型:C语言的数据类型丰富,包括整型、浮点型、字符型、数组、指针、结构体和枚举,支持...
位段结构(bit-fields)是C语言中另一种处理底层位操作的方式。通过位段结构,程序员可以定义一个结构体或联合体中的变量占用特定数量的位。这在处理具有明确位级规定的硬件寄存器或数据协议时尤其有用,例如,在...
9. **第11章位运算.ppt**:位运算符的使用,包括按位与、或、非、异或,以及左移和右移,它们在低级别操作和内存优化中非常有用。 10. **第12章文件.ppt**:文件操作是C语言高级编程的一部分,涵盖了文件打开、读写...
在C语言中,获取整数和浮点数的符号位是一个非常重要的知识点。符号位是指数值的正负符号,判断符号位是进行逻辑处理的基础。下面是获取整数和浮点数符号位的相关知识点。 首先,为什么要获取符号位?在许多情况下...