`
deepfuture
  • 浏览: 4432218 次
  • 性别: Icon_minigender_1
  • 来自: 湛江
博客专栏
073ec2a9-85b7-3ebf-a3bb-c6361e6c6f64
SQLite源码剖析
浏览量:80373
1591c4b8-62f1-3d3e-9551-25c77465da96
WIN32汇编语言学习应用...
浏览量:70859
F5390db6-59dd-338f-ba18-4e93943ff06a
神奇的perl
浏览量:104125
Dac44363-8a80-3836-99aa-f7b7780fa6e2
lucene等搜索引擎解析...
浏览量:287656
Ec49a563-4109-3c69-9c83-8f6d068ba113
深入lucene3.5源码...
浏览量:15151
9b99bfc2-19c2-3346-9100-7f8879c731ce
VB.NET并行与分布式编...
浏览量:68404
B1db2af3-06b3-35bb-ac08-59ff2d1324b4
silverlight 5...
浏览量:32594
4a56b548-ab3d-35af-a984-e0781d142c23
算法下午茶系列
浏览量:46295
社区版块
存档分类
最新评论

(转)手写数字的识别

 
阅读更多

图像预处理

使用下图(后方称为 SAMPLE_BMP)作为训练和测试数据来源,下文将讲述如何将图像转换为训练数据。

灰度化和二值化

在字符识别的过程中,识别算法不需要关心图像的彩色信息。因此,需要将彩色图像转化为灰度图像。经过灰度化处理后的图像中还包含有背景信息。因此,我们还得进一步处理,将背景噪声屏蔽掉,突显出字符轮廓信息。二值化处理就能够将其中的字符显现出来,并将背景去除掉。在一个[0,255]灰度级的灰度图像中,我们取 196 为该灰度图像的归一化值,代码如下:

  1. def convert_to_bw(im):  
  2.     im = im.convert("L")  
  3.     im.save("sample_L.bmp")  
  4.     im = im.point(lambda x: WHITE if x > 196 else BLACK)  
  5.     im = im.convert('1')  
  6.     im.save("sample_1.bmp")  
  7.     return im  
def convert_to_bw(im):
	im = im.convert("L")
	im.save("sample_L.bmp")
	im = im.point(lambda x: WHITE if x > 196 else BLACK)
	im = im.convert('1')
	im.save("sample_1.bmp")
	return im

下图是灰度化的图像,可以看到背景仍然比较明显,有一层淡灰色:

下图是二值化的图像,可以看到背景已经完全去除:

图片的分割和规范化:

通过二值化图像,我们可以分割出每一个字符为一个单独的图片,然后再计算相应的特征值,如下图所示:

这些图片是由程序自动进行分割而成,其中用到的代码片段如下:

  1. def split(im):  
  2.     assert im.mode == '1'  
  3.     result = []  
  4.     w, h = im.size  
  5.     data = im.load()  
  6.     xs = [0235777106135159179205228, w]  
  7.     ys = [0226097150, h]  
  8.     for i, x in enumerate(xs):  
  9.         if i + 1 >= len(xs):  
  10.             break  
  11.         for j, y in enumerate(ys):  
  12.             if j + 1 >= len(ys):  
  13.                 break  
  14.             box = (x, y, xs[i+1], ys[j+1])  
  15.             t = im.crop(box).copy()  
  16.             box = box + ((i + 1) % 10, )  
  17. #           save_32_32(t, 'num_%d_%d_%d_%d_%d'%box)   
  18.             result.append((normalize_32_32(t, 'num_%d_%d_%d_%d_%d'%box), (i + 1) % 10))  
  19.     return result  
def split(im):
	assert im.mode == '1'
	result = []
	w, h = im.size
	data = im.load()
	xs = [0, 23, 57, 77, 106, 135, 159, 179, 205, 228, w]
	ys = [0, 22, 60, 97, 150, h]
	for i, x in enumerate(xs):
		if i + 1 >= len(xs):
			break
		for j, y in enumerate(ys):
			if j + 1 >= len(ys):
				break
			box = (x, y, xs[i+1], ys[j+1])
			t = im.crop(box).copy()
			box = box + ((i + 1) % 10, )
#			save_32_32(t, 'num_%d_%d_%d_%d_%d'%box)
			result.append((normalize_32_32(t, 'num_%d_%d_%d_%d_%d'%box), (i + 1) % 10))
	return result

其中的 xs 和 ys 分别是横向和竖向切割的分界点,由手工测试后指定,t = im.crop(box).copy() 代码行是从指定的区域中“抠”出图片,然后通过 normalize_32_32 进行规范化。进行规范化是为了产生规则的训练和测试数据集,也是为了更容易地地计算出特征码。

产生训练数据集和测试数据集

为简单起见,我们使用了最简单的图像特征——黑色像素在图像中的分布来进行训练和测试。首先,我们把图像规范化为 32*32 像素的图片,然后按 2*2 分切成 16*16 共 256 个子区域,然后统计这 4 个像素中黑色像素的个数,组成 256 维的特征矢量,如下是数字 2 的一个特征矢量:
0 0 4 4 4 2 0 0 0 0 0 0 0 0 2 4 0 0 4 4 4 2 0 0 0 0 0 0 0 0 2 4 2 2 4 4 2 1 0 0 0 0 0 0 1 2 3 4 4 4 4 4 0 0 0 0 0 0 0 0 2 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 2 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 2 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 2 4 4 4 4 4 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 4 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 2 4 4 4 2 2 2 2 4 3 2 2 2 2 2 0 2 4 4 4 0 0 0 0 4 2 0 0 0 0 0 0 2 4 4 4 0 0 0 0 4 2 0 0 0 0 0 0 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 4
相应地,因为我们只需要识别 0~9 共 10 个数字,所以创建一个 10 维的矢量作为结果,数字相应的维置为 1 值,其它值为 0。数字 2 的结果如下:0 0 1 0 0 0 0 0 0 0
我们特征矢量和结果矢量通过以下代码计算出来后,按 FANN 的格式把它们存到 train.data 中去:

  1. f = open('train.data''wt')  
  2. print >>f, len(result), 25610  
  3. for input, output in result:  
  4.     print >>f, input  
  5.     print >>f, output  
f = open('train.data', 'wt')
print >>f, len(result), 256, 10
for input, output in result:
	print >>f, input
	print >>f, output

BP神经网络

利用神经网络识别字符是本文的另外一个关键阶段,良好的网络性能是识别结果可靠性的重要保证。这里就介绍如何利用BP 神经网络来识别字符。反向传播网络(即:Back-Propagation Networks ,简称:BP 网络)是对非线性可微分函数进行权值训练的多层前向网络。在人工神经网络的实际应用中,80%~90%的模型采用 BP 网络。它主要用在函数逼近,模式识别,分类,数据压缩等几个方面,体现了人工神经网络的核心部分。

网络结构

网络结构的设计是根据输入结点和输出结点的个数和网络性能来决定的,如下图。本实验中的标准待识别字符的大小为 32*32 的二值图像,即将 1024 个像素点的图像转化为一个 256 维的列向量作为输入。由于本实验要识别出10 个字符,可以将目标输出的值设定为一个10 维的列向量,其中与字符相对应那个位为1,其他的全为0 。根据实际经验和试验确定,本文中的网络隐含层结点数目为64。因此,本文中的BP 网络的结构为 256-64-10。

训练结果

本实验中的采用的样本个数为 50 个,将样本图像进行预处理,得到处理后的样本向量P,再设定好对应的网络输出目标向量T,把样本向量 P 和网络输出目标向量 T 都保存到 train.data 文件中。设置好网络训练参数,对网络进行训练和测试,并将最佳的一个网络权值保存到 number_char_recognize.net 文件中。下面就将本文中设置和训练网络参数的程序列举如下:

  1. connectionRate = 1  
  2. learningRate = 0.008  
  3. desiredError = 0.001  
  4. maxIterations = 10000  
  5. iterationsBetweenReports = 100  
  6. inNum= 256  
  7. hideNum = 64  
  8. outNum=10  
  9. class NeuNet(neural_net):  
  10.     def __init__(self):  
  11.         neural_net.__init__(self)  
  12.         neural_net.create_standard_array(self,(inNum, hideNum, outNum))  
  13.   
  14.           
  15.     def train_on_file(self,fileName):  
  16.         neural_net.train_on_file(self,fileName,maxIterations,iterationsBetweenReports,desiredError)  
connectionRate = 1
learningRate = 0.008
desiredError = 0.001
maxIterations = 10000
iterationsBetweenReports = 100
inNum= 256
hideNum = 64
outNum=10
class NeuNet(neural_net):
	def __init__(self):
		neural_net.__init__(self)
		neural_net.create_standard_array(self,(inNum, hideNum, outNum))

		
	def train_on_file(self,fileName):
		neural_net.train_on_file(self,fileName,maxIterations,iterationsBetweenReports,desiredError)

可以从代码中看到我们建立起一个输出层有 256 个神经元,隐藏层有 64 个神经元,输出层有 10 个神经元的ANN,其中神经层的连接率为 100%,学习率为 0.28,最大进行 10000 次迭代,并每隔 100 次报告一下学习结果。

  1. if __name__ == "__main__":  
  2.     ann = NeuNet()  
  3.     ann.train_on_file("train.data")  
  4.     ann.save("number_char_recognize2.net")  
if __name__ == "__main__":
	ann = NeuNet()
	ann.train_on_file("train.data")
	ann.save("number_char_recognize2.net")

按照上面的程序,对网络进行训练和仿真测试,保存训练性能最好的一组网络权值,并保存到起来。

通过 666 次迭代之后,错误率已经低于 0.001,学习中止,并将结果保存起来。

测试结果

实验的测试是通过从保存好的 NN 数据文件中创建 NN 的形式来实验的,具体的代码如下:

  1. if __name__ == "__main__":  
  2.     ann = NeuNet()  
  3.     ann.create_from_file("number_char_recognize.net")  
  4.     data = read_test_data()  
  5.     for k, v in data.iteritems():  
  6.         k = string_to_list(k)  
  7.         v = string_to_list(v)  
  8.         result = ann.run(k)  
  9.         print euclidean_distance(v, result)  
if __name__ == "__main__":
	ann = NeuNet()
	ann.create_from_file("number_char_recognize.net")
	data = read_test_data()
	for k, v in data.iteritems():
		k = string_to_list(k)
		v = string_to_list(v)
		result = ann.run(k)
		print euclidean_distance(v, result)

其实 ann.create_from_file 是从文件中读取存档,创建人工神经网络,然后使用 read_test_data 函数读取测试数据,并通过循环对每一个测试数据和相应的期望值转换为 NN 的输入格式,然后使用 ann.run 函数调用神经网络测试,对测试结果与期望值进行欧氏距离计算,对其中的两个测试用例,果如下:

可见两个向量的欧氏距离已经接近于 0,识别效果非常好

分享到:
评论

相关推荐

    [AB PLC例程源码][MMS_044666]Translation N-A.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    kolesar_3cd_01_0716.pdf

    kolesar_3cd_01_0716

    latchman_01_0108.pdf

    latchman_01_0108

    matlab程序代码项目案例:matlab程序代码项目案例MPC在美国高速公路场景中移动的车辆上的实现.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pimpinella_3cd_01_0716.pdf

    pimpinella_3cd_01_0716

    petrilla_01_0308.pdf

    petrilla_01_0308

    [AB PLC例程源码][MMS_041452]Speed Controls in Plastic Extrusion.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    强化学习驱动下DeepSeek技术创新及其对AI发展的影响

    内容概要:本文档由张卓老师讲解,重点探讨DeepSeek的技术革新及强化学习对未来AI发展的重要性。文章回顾了AI的历史与发展阶段,详细解析Transformer架构在AI上半场所起到的作用,深入介绍了MoE混合专家以及MLA低秩注意机制等技术特点如何帮助DeepSeek在AI中场建立优势,并探讨了当前强化学习的挑战和边界。文档不仅提及AlphaGo和小游戏等成功案例来说明强化学习的强大力量,还提出了关于未来人工通用智能(AGI)的展望,特别是如何利用强化学习提升现有LLMs的能力和性能。 适用人群:本资料适宜对深度学习感兴趣的研究人员、开发者以及想要深入了解人工智能最新进展的专业人士。 使用场景及目标:通过了解最新的AI技术和前沿概念,在实际工作中能够运用更先进的工具和技术解决问题。同时为那些寻求职业转型或者学术深造的人提供了宝贵的参考。 其他说明:文中提到了许多具体的例子和技术细节,如DeepSeek的技术特色、RL的理论背景等等,有助于加深读者对于现代AI系统的理解和认识。

    有师傅小程序开源版v2.4.14+前端.zip

    有师傅小程序开源版v2.4.14 新增报价短信奉告 优化部分细节

    [AB PLC例程源码][MMS_047333]Motor Sequence Starter with timers to start.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    商城二级三级分销系统(小程序+后台含源码).zip

    商城二级三级分销系统(小程序+后台含源码).zip

    li_3ck_01b_0918.pdf

    li_3ck_01b_0918

    nicholl_3cd_01_0516.pdf

    nicholl_3cd_01_0516

    1995-2022年 网络媒体关注度、报刊媒体关注度与媒体监督相关数据.zip

    媒体关注度是一个衡量公众对某个事件、话题或个体关注程度的重要指标。它主要反映了新闻媒体、社交媒体、博客等对于某一事件、话题或个体的报道和讨论程度。 媒体监督的J-F系数(Janis-Fadner系数)是一种用于测量媒体关注度的指标,特别是用于评估媒体对企业、事件或话题的监督力度。J-F系数基于媒体报道的正面和负面内容来计算,从而为公众、研究者或企业提供一个量化工具,以了解媒体对其关注的方向和强度。 本数据含原始数据、参考文献、代码do文件、最终结果。参考文献中JF系数计算公式。 指标 代码、年份、标题出现该公司的新闻总数、内容出现该公司的新闻总数、正面新闻数全部、中性新闻数全部、负面新闻数全部、正面新闻数原创、中性新闻数原创、负面新闻数原创,媒体监督JF系数。

    [AB PLC例程源码][MMS_040315]Double INC and Double DEC of INT datatype.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_047773]Convert Feet to Millimeters.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042349]How to read-write data to-from a PLC using OPC in Visual Basic 6.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    matlab程序代码项目案例:matlab程序代码项目案例论文代码 多篇RMPC 鲁棒模型预测控制Paper-code-implementation.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    lusted_3cd_02_0716.pdf

    lusted_3cd_02_0716

    pepeljugoski_01_0107.pdf

    pepeljugoski_01_0107

Global site tag (gtag.js) - Google Analytics