1、什么是sizeof
首先看一下sizeof在msdn上的定义:
The sizeof keyword gives the amount of storage, in bytes, associated with a variable or a type (including aggregate types). This keyword returns a value of type size_t.
看到return这个字眼,是不是想到了函数?错了,sizeof不是一个函数,你见过给一个函数传参数,而不加括号的吗?sizeof可以,所以sizeof不是函数。网上有人说sizeof是一元操作符,但是我并不这么认为,因为sizeof更像一个特殊的宏,它是在编译阶段求值的。举个例子:
cout<<sizeof(int)<<endl; // 32位机上int长度为4
cout<<sizeof(1==2)<<endl; // == 操作符返回bool类型,相当于 cout<<sizeof(bool)<<endl;
在编译阶段已经被翻译为:
cout<<4<<endl;
cout<<1<<endl;
这里有个陷阱,看下面的程序:
int a = 0;
cout<<sizeof(a=3)<<endl;
cout<<a<<endl;
输出为什么是4,0而不是期望中的4,3???就在于sizeof在编译阶段处理的特性。由于sizeof不能被编译成机器码,所以sizeof作用范围内,也就是()里面的内容也不能被编译,而是被替换成类型。=操作符返回左操作数的类型,所以a=3相当于int,而代码也被替换为:
int a = 0;
cout<<4<<endl;
cout<<a<<endl;
所以,sizeof是不可能支持链式表达式的,这也是和一元操作符不一样的地方。
结论:不要把sizeof当成函数,也不要看作一元操作符,把他当成一个特殊的编译预处理。
2、sizeof的用法
sizeof有两种用法:
(1)sizeof(object)
也就是对对象使用sizeof,也可以写成sizeof object 的形式。例如:
(2)sizeof(typename)
也就是对类型使用sizeof,注意这种情况下写成sizeof typename是非法的。下面举几个例子说明一下:
int i = 2;
cout<<sizeof(i)<<endl; // sizeof(object)的用法,合理
cout<<sizeof i<<endl; // sizeof object的用法,合理
cout<<sizeof 2<<endl; // 2被解析成int类型的object, sizeof object的用法,合理
cout<<sizeof(2)<<endl; // 2被解析成int类型的object, sizeof(object)的用法,合理
cout<<sizeof(int)<<endl;// sizeof(typename)的用法,合理
cout<<sizeof int<<endl; // 错误!对于操作符,一定要加()
可以看出,加()是永远正确的选择。
结论:不论sizeof要对谁取值,最好都加上()。
3、数据类型的sizeof
(1)C++固有数据类型
32位C++中的基本数据类型,也就char,short int(short),int,long int(long),float,double, long double
大小分别是:1,2,4,4,4,8, 10。
考虑下面的代码:
cout<<sizeof(unsigned int) == sizeof(int)<<endl; // 相等,输出 1
unsigned影响的只是最高位bit的意义,数据长度不会被改变的。
结论:unsigned不能影响sizeof的取值。
(2)自定义数据类型
typedef可以用来定义C++自定义类型。考虑下面的问题:
typedef short WORD;
typedef long DWORD;
cout<<(sizeof(short) == sizeof(WORD))<<endl; // 相等,输出1
cout<<(sizeof(long) == sizeof(DWORD))<<endl; // 相等,输出1
结论:自定义类型的sizeof取值等同于它的类型原形。
(3)函数类型
考虑下面的问题:
int f1(){return 0;};
double f2(){return 0.0;}
void f3(){}
cout<<sizeof(f1())<<endl; // f1()返回值为int,因此被认为是int
cout<<sizeof(f2())<<endl; // f2()返回值为double,因此被认为是double
cout<<sizeof(f3())<<endl; // 错误!无法对void类型使用sizeof
cout<<sizeof(f1)<<endl; // 错误!无法对函数指针使用sizeof
cout<<sizeof*f2<<endl; // *f2,和f2()等价,因为可以看作object,所以括号不是必要的。被认为是double
结论:对函数使用sizeof,在编译阶段会被函数返回值的类型取代,
4、指针问题
考虑下面问题:
cout<<sizeof(string*)<<endl; // 4
cout<<sizeof(int*)<<endl; // 4
cout<<sizof(char****)<<endl; // 4
可以看到,不管是什么类型的指针,大小都是4的,因为指针就是32位的物理地址。
结论:只要是指针,大小就是4。(64位机上要变成8也不一定)。
顺便唧唧歪歪几句,C++中的指针表示实际内存的地址。和C不一样的是,C++中取消了模式之分,也就是不再有small,middle,big,取而代之的是统一的flat。flat模式采用32位实地址寻址,而不再是c中的 segment:offset模式。举个例子,假如有一个指向地址 f000:8888的指针,如果是C类型则是8888(16位, 只存储位移,省略段),far类型的C指针是f0008888(32位,高位保留段地址,地位保留位移),C++类型的指针是f8888(32位,相当于段地址*16 + 位移,但寻址范围要更大)。
5、数组问题
考虑下面问题:
char a[] = "abcdef";
int b[20] = {3, 4};
char c[2][3] = {"aa", "bb"};
cout<<sizeof(a)<<endl; // 7
cout<<sizeof(b)<<endl; // 20*4=80
cout<<sizeof(c)<<endl; // 6
数组a的大小在定义时未指定,编译时给它分配的空间是按照初始化的值确定的,也就是7。c是多维数组,占用的空间大小是各维数的乘积,也就是6。可以看出,数组的大小就是他在编译时被分配的空间,也就是各维数的乘积*数组元素的大小。
结论:数组的大小是各维数的乘积*数组元素的大小。
这里有一个陷阱:
int *d = new int[10];
cout<<sizeof(d)<<endl; // 4
d是我们常说的动态数组,但是他实质上还是一个指针,所以sizeof(d)的值是4。
再考虑下面的问题:
double* (*a)[3][6];
cout<<sizeof(a)<<endl; // 4
cout<<sizeof(*a)<<endl; // 72
cout<<sizeof(**a)<<endl; // 24
cout<<sizeof(***a)<<endl; // 4
cout<<sizeof(****a)<<endl; // 8
a是一个很奇怪的定义,他表示一个指向 double*[3][6]类型数组的指针。既然是指针,所以sizeof(a)就是4。
既然a是执行double*[3][6]类型的指针,*a就表示一个double*[3][6]的多维数组类型,因此sizeof(*a)=3*6*sizeof(double*)=72。同样的,**a表示一个double*[6]类型的数组,所以sizeof(**a)=6*sizeof(double*)=24。***a就表示其中的一个元素,也就是double*了,所以sizeof(***a)=4。至于****a,就是一个double了,所以sizeof(****a)=sizeof(double)=8。
6、向函数传递数组的问题。
考虑下面的问题:
#include <iostream>
using namespace std;
int Sum(int i[])
{
int sumofi = 0;
for (int j = 0; j < sizeof(i)/sizeof(int); j++) //实际上,sizeof(i) = 4
{
sumofi += i[j];
}
return sumofi;
}
int main()
{
int allAges[6] = {21, 22, 22, 19, 34, 12};
cout<<Sum(allAges)<<endl;
system("pause");
return 0;
}
Sum的本意是用sizeof得到数组的大小,然后求和。但是实际上,传入自函数Sum的,只是一个int 类型的指针,所以sizeof(i)=4,而不是24,所以会产生错误的结果。解决这个问题的方法使是用指针或者引用。
使用指针的情况:
int Sum(int (*i)[6])
{
int sumofi = 0;
for (int j = 0; j < sizeof(*i)/sizeof(int); j++) //sizeof(*i) = 24
{
sumofi += (*i)[j];
}
return sumofi;
}
int main()
{
int allAges[] = {21, 22, 22, 19, 34, 12};
cout<<Sum(&allAges)<<endl;
system("pause");
return 0;
}
在这个Sum里,i是一个指向i[6]类型的指针,注意,这里不能用int Sum(int (*i)[])声明函数,而是必须指明要传入的数组的大小,不然sizeof(*i)无法计算。但是在这种情况下,再通过sizeof来计算数组大小已经没有意义了,因为此时大小是指定为6的。
使用引用的情况和指针相似:
int Sum(int (&i)[6])
{
int sumofi = 0;
for (int j = 0; j < sizeof(i)/sizeof(int); j++)
{
sumofi += i[j];
}
return sumofi;
}
int main()
{
int allAges[] = {21, 22, 22, 19, 34, 12};
cout<<Sum(allAges)<<endl;
system("pause");
return 0;
}
这种情况下sizeof的计算同样无意义,所以用数组做参数,而且需要遍历的时候,函数应该有一个参数来说明数组的大小,而数组的大小在数组定义的作用域内通过sizeof求值。因此上面的函数正确形式应该是:
#include <iostream>
using namespace std;
int Sum(int *i, unsigned int n)
{
int sumofi = 0;
for (int j = 0; j < n; j++)
{
sumofi += i[j];
}
return sumofi;
}
int main()
{
int allAges[] = {21, 22, 22, 19, 34, 12};
cout<<Sum(i, sizeof(allAges)/sizeof(int))<<endl;
system("pause");
return 0;
}
7、字符串的sizeof和strlen
考虑下面的问题:
char a[] = "abcdef";
char b[20] = "abcdef";
string s = "abcdef";
cout<<strlen(a)<<endl; // 6,字符串长度
cout<<sizeof(a)<<endl; // 7,字符串容量
cout<<strlen(b)<<endl; // 6,字符串长度
cout<<sizeof(b)<<endl; // 20,字符串容量
cout<<sizeof(s)<<endl; // 12, 这里不代表字符串的长度,而是string类的大小
cout<<strlen(s)<<endl; // 错误!s不是一个字符指针。
a[1] = '\0';
cout<<strlen(a)<<endl; // 1
cout<<sizeof(a)<<endl; // 7,sizeof是恒定的
strlen是寻找从指定地址开始,到出现的第一个0之间的字符个数,他是在运行阶段执行的,而sizeof是得到数据的大小,在这里是得到字符串的容量。所以对同一个对象而言,sizeof的值是恒定的。string是C++类型的字符串,他是一个类,所以sizeof(s)表示的并不是字符串的长度,而是类string的大小。strlen(s)根本就是错误的,因为strlen的参数是一个字符指针,如果想用strlen得到s字符串的长度,应该使用sizeof(s.c_str()),因为string的成员函数c_str()返回的是字符串的首地址。实际上,string类提供了自己的成员函数来得到字符串的容量和长度,分别是Capacity()和Length()。string封装了常用了字符串操作,所以在C++开发过程中,最好使用string代替C类型的字符串。
8、从union的sizeof问题看cpu的对界
考虑下面问题:(默认对齐方式)
union u
{
double a;
int b;
};
union u2
{
char a[13];
int b;
};
union u3
{
char a[13];
char b;
};
cout<<sizeof(u)<<endl; // 8
cout<<sizeof(u2)<<endl; // 16
cout<<sizeof(u3)<<endl; // 13
都知道union的大小取决于它所有的成员中,占用空间最大的一个成员的大小。所以对于u来说,大小就是最大的double类型成员a了,所以sizeof(u)=sizeof(double)=8。但是对于u2和u3,最大的空间都是char[13]类型的数组,为什么u3的大小是13,而u2是16呢?关键在于u2中的成员int b。由于int类型成员的存在,使u2的对齐方式变成4,也就是说,u2的大小必须在4的对界上,所以占用的空间变成了16(最接近13的对界)。
结论:复合数据类型,如union,struct,class的对齐方式为成员中对齐方式最大的成员的对齐方式。
顺便提一下CPU对界问题,32的C++采用8位对界来提高运行速度,所以编译器会尽量把数据放在它的对界上以提高内存命中率。对界是可以更改的,使用#pragma pack(x)宏可以改变编译器的对界方式,默认是8。C++固有类型的对界取编译器对界方式与自身大小中较小的一个。例如,指定编译器按2对界,int类型的大小是4,则int的对界为2和4中较小的2。在默认的对界方式下,因为几乎所有的数据类型都不大于默认的对界方式8(除了long double),所以所有的固有类型的对界方式可以认为就是类型自身的大小。更改一下上面的程序:
#pragma pack(2)
union u2
{
char a[13];
int b;
};
union u3
{
char a[13];
char b;
};
#pragma pack(8)
cout<<sizeof(u2)<<endl; // 14
cout<<sizeof(u3)<<endl; // 13
由于手动更改对界方式为2,所以int的对界也变成了2,u2的对界取成员中最大的对界,也是2了,所以此时sizeof(u2)=14。
结论:C++固有类型的对界取编译器对界方式与自身大小中较小的一个。
9、struct的sizeof问题
因为对齐问题使结构体的sizeof变得比较复杂,看下面的例子:(默认对齐方式下)
struct s1
{
char a;
double b;
int c;
char d;
};
struct s2
{
char a;
char b;
int c;
double d;
};
cout<<sizeof(s1)<<endl; // 24
cout<<sizeof(s2)<<endl; // 16
同样是两个char类型,一个int类型,一个double类型,但是因为对界问题,导致他们的大小不同。计算结构体大小可以采用元素摆放法,我举例子说明一下:首先,CPU判断结构体的对界,根据上一节的结论,s1和s2的对界都取最大的元素类型,也就是double类型的对界8。然后开始摆放每个元素。
对于s1,首先把a放到8的对界,假定是0,此时下一个空闲的地址是1,但是下一个元素d是double类型,要放到8的对界上,离1最接近的地址是8了,所以d被放在了8,此时下一个空闲地址变成了16,下一个元素c的对界是4,16可以满足,所以c放在了16,此时下一个空闲地址变成了20,下一个元素d需要对界1,也正好落在对界上,所以d放在了20,结构体在地址21处结束。由于s1的大小需要是8的倍数,所以21-23的空间被保留,s1的大小变成了24。
对于s2,首先把a放到8的对界,假定是0,此时下一个空闲地址是1,下一个元素的对界也是1,所以b摆放在1,下一个空闲地址变成了2;下一个元素c的对界是4,所以取离2最近的地址4摆放c,下一个空闲地址变成了8,下一个元素d的对界是8,所以d摆放在8,所有元素摆放完毕,结构体在15处结束,占用总空间为16,正好是8的倍数。
这里有个陷阱,对于结构体中的结构体成员,不要认为它的对齐方式就是他的大小,看下面的例子:
struct s1
{
char a[8];
};
struct s2
{
double d;
};
struct s3
{
s1 s;
char a;
};
struct s4
{
s2 s;
char a;
};
cout<<sizeof(s1)<<endl; // 8
cout<<sizeof(s2)<<endl; // 8
cout<<sizeof(s3)<<endl; // 9
cout<<sizeof(s4)<<endl; // 16;
s1和s2大小虽然都是8,但是s1的对齐方式是1,s2是8(double),所以在s3和s4中才有这样的差异。
所以,在自己定义结构体的时候,如果空间紧张的话,最好考虑对齐因素来排列结构体里的元素。
10、不要让double干扰你的位域
在结构体和类中,可以使用位域来规定某个成员所能占用的空间,所以使用位域能在一定程度上节省结构体占用的空间。不过考虑下面的代码:
struct s1
{
int i: 8;
int j: 4;
double b;
int a:3;
};
struct s2
{
int i;
int j;
double b;
int a;
};
struct s3
{
int i;
int j;
int a;
double b;
};
struct s4
{
int i: 8;
int j: 4;
int a:3;
double b;
};
cout<<sizeof(s1)<<endl; // 24
cout<<sizeof(s2)<<endl; // 24
cout<<sizeof(s3)<<endl; // 24
cout<<sizeof(s4)<<endl; // 16
发表评论
-
set容器的反向迭代器
2013-05-02 16:56 3743#include <iostream> #in ... -
对于CRITICAL_SECTION用法的介绍和理解[转]
2013-04-08 11:50 2181很多人对CRITICAL_SECTION ... -
二维数组知识
2012-09-15 17:20 817二维数组和指针⑴ 用 ... -
Realloc的使用
2012-08-14 11:04 830realloc 用过很多次了。 ... -
extern C的由来
2012-08-09 10:14 696时常在cpp的代码之中看到这样的代码: #ifdef ... -
C++类对象的创建过程
2012-07-26 16:02 939分配空间(Allocation) ... -
静态数据成员和静态成员函数
2012-07-26 15:04 3111静态类成员包括静态数据成员和静态函数成员两部分。 与 ... -
复制构造函数(拷贝构造函数)以及深浅拷贝
2012-07-25 22:39 1429对于普通对象而言复制是很简单的,一般是将变量或者常量赋值给某 ... -
cin、cin.get、cin.getline()、getline()、gets()的用法【转】
2012-07-24 20:05 831学C++的时候,这几个输入函数弄的有点迷糊;这里做个小结,为了 ... -
编程笔记(07-24)
2012-07-24 15:15 6681 #include < stdio.h ... -
堆、栈解疑
2012-07-12 21:53 586一、预备知识—程序的内存分配 一个由C/C++编译的程序 ... -
指针和内存分配的深度理解
2012-07-12 18:57 1032一 :关于指针和堆的内存分配 先来介绍一下指针: 指针一种 ... -
数组指针和指针数组
2012-07-12 18:56 1187先看一下基本的形式,我们从这里起步! ----------- ... -
const指针和指向const的指针
2012-07-12 10:30 2120指向const对象的指针 ... -
typedef的学习
2012-07-11 15:03 740typedef,顾名思义,为“类型定义”,可以解释为:将一种数 ... -
函数指针和指针函数
2012-07-11 11:21 595【函数指针】 ... -
Define学习
2012-07-11 10:12 1074宏替换是C/C++系列语言的技术特色,C/C++语言提 ... -
内存对齐问题
2012-07-10 22:35 10981.内存数据对齐的原因: 无论如何,为了提高程序的性 ... -
指针深究
2012-07-09 21:55 595在说指向指针的指针之前,不得不说指向变量的指针。先看如下示例: ... -
C语言文件使用方式详解
2012-07-04 10:23 769文件的打开(fopen函数) f ...
相关推荐
在C语言中,`sizeof`是一个非常重要的运算符,它用于获取任何数据类型或变量所占用的内存字节数。这个运算符对于理解和优化代码、处理内存分配以及了解底层计算机工作原理都至关重要。下面我们将详细探讨`sizeof`的...
在MATLAB编程环境中,`sizeof`是一个非常重要的函数,它用于获取MATLAB中内置数据类型所占用的内存字节数。这个知识点对于理解和优化MATLAB程序的性能、内存使用以及理解数据存储方式至关重要。下面我们将深入探讨`...
MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 SIZEOF.02MFC源代码 ...
在C/C++编程语言中,`sizeof`运算符是一个非常重要的工具,用于获取任何数据类型或变量所占用的内存字节数。理解`sizeof`的使用对于优化代码、理解和预测程序内存消耗至关重要。以下是关于`sizeof`运算符的详细解释...
### 详细讲解 `sizeof` 的使用 #### 一、`sizeof` 概念解析 `sizeof` 是 C 语言中的一个单目操作符,用于获取指定类型或变量的存储大小,单位为字节。它不同于普通的函数调用,而是直接在编译阶段就被解析。 ####...
在C/C++编程语言中,`sizeof`是一个非常重要的运算符,用于获取变量或类型所占用内存的字节数。本篇文章将全面讲解`sizeof`的用法,并将其与常用的字符串长度函数`strlen()`进行比较,帮助开发者深入理解并解决在...
### C++ `sizeof` 使用规则及陷阱分析 #### 一、`sizeof` 概念介绍 在C++中,`sizeof` 是一个关键字,用于获取变量或类型(包括聚合类型)所占用的存储空间大小(以字节为单位)。这个关键字返回一个 `size_t` ...
sizeof用法详解 sizeof是C语言中一种单目操作符,用于获取操作数的存储大小。它可以用于获取变量、数据类型、数组、指针等的存储大小。 一、sizeof 的概念 sizeof是一个单目操作符,它不是函数。它以字节形式给出...
### 详细解析C语言中的`sizeof` #### 一、`sizeof`的概念 `sizeof`是C语言中的一个单目操作符,类似于其他操作符如`++`和`--`等。需要注意的是,`sizeof`不是函数,而是用来获取操作数(可以是一个表达式或类型名...
sizeof 计算 struct 大小 sizeof 是一个 unary 运算符,用于计算变量或类型的大小,以字节为单位。在 C 语言中,sizeof 运算符可以应用于变量、数组、结构体、联合体、枚举类型等各种数据类型。sizeof 运算符的结果...
在C/C++编程语言中,`sizeof`和`strlen`是两个非常重要的操作符,它们分别用于获取数据类型的大小和字符串的长度。然而,这两个操作符有着本质的区别,理解和掌握它们的区别对于编写高效且无误的代码至关重要。 ...
### sizeof与strlen的区别详解 #### 一、概述 在C/C++编程语言中,`sizeof`和`strlen`是两个非常重要的概念,它们都用于获取有关数据的信息,但各自的作用和应用场景有所不同。本文将详细介绍这两个操作符/函数的...
在C/C++编程语言中,`sizeof`是一个非常重要的运算符,它用于计算类型或变量在内存中占用的字节数。理解`sizeof`的使用是编写高效且内存管理得当的程序的关键。以下是关于`sizeof`的一些核心知识点: 1. **基本类型...
### 深入理解 `sizeof` 运算符 #### 引言 在日常的编程工作中,`sizeof` 是一个非常常见的运算符,用于获取变量或类型所占用的内存大小。然而,对于初学者而言,`sizeof` 的行为有时会显得有些神秘。本文将详细解释...
`sizeof()`是一个C++语言中的运算符,用于计算数据类型或者变量所占据的内存空间的大小,单位通常是字节。这个运算符对于理解和优化代码内存使用是非常有用的。下面将详细介绍`sizeof()`的一些主要用法。 1. **与`...
C语言中的sizeof操作符 一、sizeof的概念 sizeof是C语言的一种单目操作符,如C语言的其他操作符++、--等。它并不是函数。sizeof操作符以字节形式给出了其操作数的存储大小。操作数可以是一个表达式或括在括号内的...
sizeof 操作符的概念、使用方法和结果 sizeof 操作符是 C 语言中的一种单目操作符,用于获取其操作数的存储大小。它并不是函数,而是一个操作符,如同 C 语言的其他操作符++、--等。sizeof 操作符可以用于数据类型...
`sizeof`是C和C++中的一个非常重要的运算符,用于获取任何数据类型或变量在内存中占用的字节数。下面将详细讲解`sizeof`的用法。 1. `sizeof`与`strlen`的区别: - `strlen()`函数主要用于计算字符数组(字符串)...