`
李楚男
  • 浏览: 120517 次
  • 性别: Icon_minigender_1
  • 来自: 广州
社区版块
存档分类
最新评论

Android的系统的Binder机制(一)

 
阅读更多
         Android系统的Binder机制之一——Service Manager
    Android虽然构建在Linux上面,但是在IPC(进程间)机制方面,没有利用Linux提供IPC机制,而是自己实现了一套轻量级的IPC机制——binder机制。并且Android Binder机制之上,Android框架提供了一套封装,可以实现对象代理(在本地进程中代理远程进程的对象)。本文简单分析一下Android Binder机制。
    Binder情景分析

    一个IPC通讯我们可以理解成客户端-服务器模式,因此我们先在这里分析一下典型的Binder应用模式:

    1、客户端通过某种方式得到服务器端的代理对象。从客户端角度看来代理对象和他的本地对象没有什么差别。它可以像其他本地对象一样调用其方法,访问其变量。
    2、客户端通过调用服务器代理对象的方法向服务器端发送请求。
    3、代理对象把用户请求通过Android内核(Linux内核)的Binder驱动发送到服务器进程。
    4、服务器进程处理用户请求,并通过Android内核(Linux内核)的Binder驱动返回处理结果给客户端的服务器代理对象。
    5、客户端收到服务器端的返回结果。

Binder机制的组成
1、Binder驱动
    binder是内核中的一个字符驱动设备位于:/dev/binder。这个设备是Android系统IPC的核心部分,客户端的服务代理用来通过它向服务器(server)发送请求,服务器也是通过它把处理结果返回给客户端的服务代理对象。我们只需要知道它的功能就可以了,本文我们的重点不在这里,所以后面不会专门介绍这部分,因为很少会有人会显示打开这个设备去开发Android程序。如果想深入了解的话,请研究内核源码中的binder.c。
2、Service Manager
    负责管理服务。对应于第一步中,客户端需要向Service Manager来查询和获得所需要服务。服务器也需要向Service Manager注册自己提供的服务。可以看出Service Manager是服务的大管家。
3、服务(Server)
    需要强调的是这里服务是指的是System Server,而不是SDK server,请参考《(转)高焕堂——Android框架底层结构知多少?》关于两种Server的介绍(其实应该是三种,丢掉了init调用的server,在init.rc中配置)。
4、客户端
    一般是指Android系统上面的应用程序。它可以请求Server中的服务。
5、对象代理
    是指在客户端应用程序中生成的Server代理(proxy)。从应用程序角度看代理对象和本地对象没有差别,都可以调用其方法,方法都是同步的,并且返回相应的结果。

大内总管——Service Manager
    Android系统Binder机制的总管是Service Manager,所有的Server(System Server)都需要向他注册,应用程序需要向其查询相应的服务。可见其作用是多么的重要,所以本文首先介绍Service Manager。

    通过上面介绍我们知道Service Manager非常重要,责任重大。那么怎样才能成为Service Manager呢?是不是谁都可以成为Service Manager呢?怎样处理server的注册和应用程序的查询和获取服务呢?为了回答这些问题先查看,Android中Service Manager的源码,其源码位于:

frameworks\base\cmds\servicemanager\service_manager.c

我们发现了main函数,说明他自己就是一个进程,在init.rc中我们发现:

service servicemanager /system/bin/servicemanager
    user system
    critical
    onrestart restart zygote
    onrestart restart media

说明其是Android核心程序,开机就会自动运行。

    下面我们在研究一下它的代码,main函数很简单:

int main(int argc, char **argv)
{
    struct binder_state *bs;
    void *svcmgr = BINDER_SERVICE_MANAGER;

    bs = binder_open(128*1024);

    if (binder_become_context_manager(bs)) {
        LOGE("cannot become context manager (%s)\n", strerror(errno));
        return -1;
    }

    svcmgr_handle = svcmgr;
    binder_loop(bs, svcmgr_handler);
    return 0;
}

我们看到它先调用binder_open打开binder设备(/dev/binder),其次它调用了binder_become_context_manager函数,这个函数使他自己变为了“Server大总管”,其代码如下:

int binder_become_context_manager(struct binder_state *bs)
{
    return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}

也就是通过ioctl向binder设备声明“我就是server大总管”。

    Service Manager作为一个Server大总管,本身也是一个server。既然是一个server就要时刻准备为客户端提供服务。最好Service Manager调用binder_loop进入到循环状态,并提供了一个回调函数,等待用户的请求。注意他的Service Manager的客户端既包括应用程序(查询和获取服务),也包括Server(注册服务)。

    Service Manager的客户怎样才能请求其服务呢?答案是上文我们提到的情景一样。客户需要在自己进程中创建一个服务器代理。现在没有地方去查询服务,那么怎样它的客户怎样生成他的服务代理对象呢?答案是binder设备(/devbinder)为每一个服务维护一个句柄,调用binder_become_context_manager函数变为“Server大总管”的服务,他的句柄永远是0,是一个“众所周知”的句柄,这样每个程序都可以通过binder机制在自己的进程空间中创建一个

Service Manager代理对象了。其他的服务在binder设备在设备中的句柄是不定的,需要向“Server大总管”查询才能知道。

    现在我们需要研究Server怎样注册服务了,还是在其源码中,我们可以看到在其服务处理函数中(上文提到binder_loop函数注册给binder设备的回调函数)有如下代码:

    case SVC_MGR_ADD_SERVICE:
        s = bio_get_string16(msg, &len);
        ptr = bio_get_ref(msg);
        if (do_add_service(bs, s, len, ptr, txn->sender_euid))
            return -1;
        break;

有server向binder设备写入请求注册Service时,Service Manager的服务处理回调函数将会被调用。我们在仔细看看do_add_service函数的实现:

int do_add_service(struct binder_state *bs,
                   uint16_t *s, unsigned len,
                   void *ptr, unsigned uid)
{
    struct svcinfo *si;
//    LOGI("add_service('%s',%p) uid=%d\n", str8(s), ptr, uid);

    if (!ptr || (len == 0) || (len > 127))
        return -1;

    if (!svc_can_register(uid, s)) {
        LOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n",
             str8(s), ptr, uid);
        return -1;
    }

    si = find_svc(s, len);
    if (si) {
        if (si->ptr) {
            LOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED\n",
                 str8(s), ptr, uid);
            return -1;
        }
        si->ptr = ptr;
    } else {
        si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
        if (!si) {
            LOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n",
                 str8(s), ptr, uid);
            return -1;
        }
        si->ptr = ptr;
        si->len = len;
        memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
        si->name[len] = '\0';
        si->death.func = svcinfo_death;
        si->death.ptr = si;
        si->next = svclist;
        svclist = si;
    }

    binder_acquire(bs, ptr);
    binder_link_to_death(bs, ptr, &si->death);
    return 0;
}

我们看到首先检查是否有权限注册service,没权限就对不起了,出错返回;然后检查是否已经注册过,注册过的service将不能再次注册。然后构造一个svcinfo对象,并加入一个全局链表中svclist中。最后通知binder设备:有一个service注册进来。

    我们再来看看客户端怎样通过Service Manager获得Service,还是在服务处理函数中(上文提到binder_loop函数注册给binder设备的回调函数)有如下代码:

    case SVC_MGR_GET_SERVICE:
    case SVC_MGR_CHECK_SERVICE:
        s = bio_get_string16(msg, &len);
        ptr = do_find_service(bs, s, len);
        if (!ptr)
            break;
        bio_put_ref(reply, ptr);
        return 0;

    我们可以看到通过do_find_service查找Service如果查找到的话,写入reply中返回给客户端。

    本文我们简单分析了一下Service Manager,后续我们会继续分析Android binder机制的其他部分。






分享到:
评论

相关推荐

    spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip

    # 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1

    房地产 -可视化管理课件.ppt

    房地产 -可视化管理课件.ppt

    tokenizers-0.18.0.jar中文-英文对照文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    基于MATLAB的BP神经网络预测模型构建与应用

    内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。

    tokenizers-0.22.1.jar中文-英文对照文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    基于蒙特卡洛算法的电动汽车对IEEE 33节点电网影响的研究及应用场景分析

    内容概要:本文探讨了电动汽车(EV)对IEEE 33节点电网的影响,特别是汽车负荷预测与节点潮流网损、压损计算。通过蒙特卡洛算法模拟电动汽车负荷的时空特性,研究了四种不同场景下电动汽车接入电网的影响。具体包括:负荷接入前后的网损与电压计算、不同节点接入时的变化、不同时段充电的影响以及不同负荷大小对电网的影响。通过这些分析,揭示了电动汽车充电行为对电网的具体影响机制,为未来的电网规划和优化提供了重要参考。 适合人群:从事电力系统研究的专业人士、电网规划工程师、电动汽车行业从业者、能源政策制定者。 使用场景及目标:①评估电动汽车大规模接入对现有电网基础设施的压力;②优化电动汽车充电设施的布局和运营策略;③为相关政策和技术标准的制定提供科学依据。 其他说明:文中提供的Python代码片段用于辅助理解和验证理论分析,实际应用中需要更复杂的模型和详细的电网参数。

    房地产 -【万科经典-第五园】第五园产品推介会.ppt

    房地产 -【万科经典-第五园】第五园产品推介会.ppt

    稳压器件.SchLib

    稳压器件.SchLib

    1.jpg

    1

    模拟符号.SCHLIB

    模拟符号.SCHLIB

    基于Simulink的三相电压型逆变器SPWM与电压单闭环控制仿真

    内容概要:本文详细介绍了如何在Simulink中构建并仿真三相电压型逆变器的SPWM调制和电压单闭环控制系统。首先,搭建了由六个IGBT组成的三相全桥逆变电路,并设置了LC滤波器和1000V直流电源。接着,利用PWM Generator模块生成SPWM波形,设置载波频率为2kHz,调制波为50Hz工频正弦波。为了实现精确的电压控制,采用了abc/dq变换将三相电压信号转换到旋转坐标系,并通过锁相环(PLL)进行同步角度跟踪。电压闭环控制使用了带有抗饱和处理的PI调节器,确保输出电压稳定。此外,文中还讨论了标幺值处理方法及其优势,以及如何通过FFT分析验证输出波形的质量。 适用人群:电力电子工程师、自动化控制专业学生、从事逆变器研究的技术人员。 使用场景及目标:适用于希望深入了解三相电压型逆变器控制原理和技术实现的研究人员和工程师。主要目标是掌握SPWM调制技术和电压单闭环控制的设计与调试方法,提高系统的稳定性和效率。 其他说明:文中提供了详细的建模步骤和参数设置指南,帮助读者快速上手并在实践中不断优化模型性能。同时,强调了一些常见的调试技巧和注意事项,如载波频率的选择、积分器防饱和处理等。

    【蓝桥杯EDA】客观题解析:第十三届立创EDA出品省赛模拟题一.pdf

    【蓝桥杯EDA】客观题解析

    房地产 -物业 苏州设备房管理标准.ppt

    房地产 -物业 苏州设备房管理标准.ppt

    3.png

    3

    房地产 -2024H1房地产市场总结与展望(新房篇).docx

    房地产 -2024H1房地产市场总结与展望(新房篇).docx

    LabVIEW与PLC基于TCP协议的自动化数据交互解决方案

    内容概要:本文详细介绍了利用LabVIEW与PLC进行自动化数据交互的技术方案,涵盖参数管理、TCP通信、串口扫描、数据转移等方面。首先,通过配置文件(INI)实现参数的自动加载与保存,确保参数修改不影响程序运行。其次,在TCP通信方面采用异步模式和心跳包设计,增强通信稳定性,并加入CRC16校验避免数据丢失。对于串口扫描,则通过VISA配置实现状态触发,确保进出站检测的准确性。最后,针对不同类型的数据转移提出具体方法,如TDMS文件存储策略,确保高效可靠的数据处理。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉LabVIEW和PLC编程的从业者。 使用场景及目标:适用于需要将LabVIEW作为上位机与PLC进行数据交互的工业生产线环境,旨在提高系统的自动化程度、稳定性和易维护性。 其他说明:文中提供了多个实用代码片段和注意事项,帮助读者更好地理解和应用相关技术。

    d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a.png

    d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a

    信息安全管理和技术的综合练习题集(NISP&CISP)

    内容概要:本文档《NISP&CISP考试题库.pdf》汇集了大量关于信息安全专业领域的练习题,涵盖风险评估、安全策略、访问控制、恶意代码防范、加密技术、安全模型等多个方面。文档通过选择题的形式探讨了信息安全保障、风险管理和技术实施等核心内容,强调了信息安全保障的动态性和持续性,以及信息安全管理体系(ISMS)的重要性。文档还详细介绍了多种安全技术和标准,如ISO27001、GB/T 22080、SSE-CMM、CC标准等,并通过具体案例和场景分析,帮助读者理解如何在实际环境中应用这些标准和技术。 适用人群:文档适用于信息安全领域的从业者,尤其是准备参加NISP(国家信息安全水平考试)和CISP(注册信息安全专业人员)认证考试的考生,以及从事信息安全管理工作、对信息安全有兴趣的技术人员。 使用场景及目标:①帮助考生系统复习信息安全领域的基础知识和技能,为考试做准备;②为企业内部信息安全培训提供参考资料;③加深信息安全从业人员对安全标准和技术的理解,提升其在实际工作中的应用能力;④帮助信息安全管理者了解如何构建和维护有效的信息安全管理体系。 其他说明:文档不仅提供了理论知识,还结合了实际案例,有助于读者理解信息安全的复杂性和多样性。文档强调了信息安全的多层次、多维度特性,指出信息安全不仅依赖于技术手段,还需要结合管理措施和人员培训。此外,文档中的题目设计贴近实际工作场景,能够有效提升读者应对信息安全挑战的能力。

    3dmax插件K_Tools.v2.6.ms

    3dmax插件K_Tools.v2.6

    【数学建模竞赛】华中杯数学建模竞赛介绍:参赛指南与备赛建议

    内容概要:“华中杯”是由华中地区高校或相关机构举办的数学建模竞赛,旨在培养学生的创新能力和团队合作精神。比赛主要面向全国高校在校生(以本科生为主,部分赛事允许研究生参加),采用团队赛形式(3人一组),参赛队伍需在72小时内完成建模、编程及论文写作。竞赛一般在每年4月或5月举行,设有多个奖项,具体比例根据参赛队伍数量确定。; 适合人群:对数学建模感兴趣并希望提升自身能力的全国高校在校生(本科生为主,部分赛事允许研究生参加)。; 使用场景及目标:①帮助学生了解数学建模竞赛的形式与流程;②为参赛者提供备赛建议,如学习往届真题、掌握Matlab、Python、LaTeX等工具以及明确团队分工;③鼓励学生关注官方通知,确保获取最新赛程和规则信息。; 其他说明:2025年的具体赛程、规则可能会有所调整,请以“华中杯数学建模竞赛官网”或主办方通知为准。可通过学校数学系或相关社团获取报名信息。

Global site tag (gtag.js) - Google Analytics