When studying both the Java NIO and IO API's, a question quickly pops into mind:
When should I use IO and when should I use NIO?
In this text I will try to shed some light on the differences between Java NIO and IO, their use cases, and how they affect the design of your code.
Main Differences of Java NIO and IO
The table below summarizes the main differences between Java NIO and IO. I will get into more detail about each difference in the sections following the table.
IO | NIO |
Stream oriented | Buffer oriented |
Blocking IO | Non blocking IO |
Selectors |
Stream Oriented vs. Buffer Oriented
The first big difference between Java NIO and IO is that IO is stream oriented, where NIO is buffer oriented. So, what does that mean?
Java IO being stream oriented means that you read one or more bytes at a time, from a stream. What you do with the read bytes is up to you. They are not cached anywhere. Furthermore, you cannot move forth and back in the data in a stream. If you need to move forth and back in the data read from a stream, you will need to cache it in a buffer first.
Java NIO's buffer oriented approach is slightly different. Data is read into a buffer from which it is later processed. You can move forth and back in the buffer as you need to. This gives you a bit more flexibility during processing. However, you also need to check if the buffer contains all the data you need in order to fully process it. And, you need to make sure that when reading more data into the buffer, you do not overwrite data in the buffer you have not yet processed.
Blocking vs. Non-blocking IO
Java IO's various streams are blocking. That means, that when a
thread invokes a read()
or write()
, that thread is blocked until there is some
data to read, or the data is fully written.
The thread can do nothing else in the meantime.
Java NIO's non-blocking mode enables a thread to request reading data from a channel, and only get what is currently available, or nothing at all, if no data is currently available. Rather than remain blocked until data becomes available for reading, the thread can go on with something else.
The same is true for non-blocking writing. A thread can request that some data be written to a channel, but not wait for it to be fully written. The thread can then go on and do something else in the mean time.
What threads spend their idle time on when not blocked in IO calls, is usually performing IO on other channels in the meantime. That is, a single thread can now manage multiple channels of input and output.
Selectors
Java NIO's selectors allow a single thread to monitor multiple channels of input. You can register multiple channels with a selector, then use a single thread to "select" the channels that have input available for processing, or select the channels that are ready for writing. This selector mechanism makes it easy for a single thread to manage multiple channels.
How NIO and IO Influences Application Design
Whether you choose NIO or IO as your IO toolkit may impact the following aspects of your application design:
- The API calls to the NIO or IO classes.
- The processing of data.
- The number of thread used to process the data.
The API Calls
Of course the API calls when using NIO look different than when
using IO. This is no surprise.
Rather than just read the data byte for byte from e.g. an InputStream
,
the data
must first be read into a buffer, and then be processed from there.
The Processing of Data
The processing of the data is also affected when using a pure NIO design, vs. an IO design.
In an IO design you read the data byte for byte from an InputStream
or
a Reader
. Imagine you were processing a stream of line
based textual data.
For instance:
Name: Anna Age: 25 Email: anna@mailserver.com Phone: 1234567890
This stream of text lines could be processed like this:
InputStream input = ... ; // get the InputStream from the client socket BufferedReader reader = new BufferedReader(new InputStreamReader(input)); String nameLine = reader.readLine(); String ageLine = reader.readLine(); String emailLine = reader.readLine(); String phoneLine = reader.readLine();
Notice how the processing state is determined by how far the program
has executed. In other words,
once the first reader.readLine()
method returns, you
know for sure that a full line
of text has been read. The readLine()
blocks until a
full line is read, that's why.
You also know that this line contains the name. Similarly, when the
second readLine()
call returns, you know that this line contains the age etc.
As you can see, the program progresses only when there is new data to read, and for each step you know what that data is. Once the executing thread have progressed past reading a certain piece of data in the code, the thread is not going backwards in the data (mostly not). This principle is also illustrated in this diagram:
![]() |
Java IO: Reading data from a blocking stream. |
A NIO implementation would look different. Here is a simplified example:
ByteBuffer buffer = ByteBuffer.allocate(48); int bytesRead = inChannel.read(buffer);
Notice the second line which reads bytes from the channel into the ByteBuffer
.
When that method call returns you don't know if all the data you
need is inside the buffer.
All you know is that the buffer contains some bytes. This makes
processing somewhat harder.
Imagine if, after the first read(buffer)
call, that all
what was read into the
buffer was half a line. For instance, "Name: An". Can you process
that data? Not really.
You need to wait until at leas a full line of data has been into the
buffer, before it
makes sense to process any of the data at all.
So how do you know if the buffer contains enough data for it to make sense to be processed? Well, you don't. The only way to find out, is to look at the data in the buffer. The result is, that you may have to inspect the data in the buffer several times before you know if all the data is inthere. This is both inefficient, and can become messy in terms of program design. For instance:
ByteBuffer buffer = ByteBuffer.allocate(48); int bytesRead = inChannel.read(buffer); while(! bufferFull(bytesRead) ) { bytesRead = inChannel.read(buffer); }
The bufferFull()
method has to keep track of how much
data is read into the buffer,
and return either true
or false
, depending
on whether the buffer is
full. In other words, if the buffer is ready for processing, it is
considered full.
The bufferFull()
method scans through the buffer, but
must leave the buffer in
the same state as before the bufferFull()
method was
called. If not, the next
data read into the buffer might not be read in at the correct
location. This is not impossible,
but it is yet another issue to watch out for.
If the buffer is full, it can be processed. If it is not full, you might be able to partially process whatever data is there, if that makes sense in your particular case. In many cases it doesn't.
The is-data-in-buffer-ready loop is illustrated in this diagram:
![]() |
Java NIO: Reading data from a channel until all needed data is in buffer. |
Summary
NIO allows you to manage multiple channels (network connections or files) using only a single (or few) threads, but the cost is that parsing the data might be somewhat more complicated than when reading data from a blocking stream.
If you need to manage thousands of open connections simultanously, which each only send a little data, for instance a chat server, implementing the server in NIO is probably an advantage. Similarly, if you need to keep a lot of open connections to other computers, e.g. in a P2P network, using a single thread to manage all of your outbound connections might be an advantage. This one thread, multiple connections design is illustrated in this diagram:
![]() |
Java NIO: A single thread managing multiple connections. |
If you have fewer connections with very high bandwidth, sending a lot of data at a time, perhaps a classic IO server implementation might be the best fit. This diagram illustrates a classic IO server design:
![]() |
Java IO: A classic IO server design - one connection handled by one thread. |
相关推荐
Peakdet 是一个 NodeJS 库,用于检测数据中的峰谷。 Peakdet 采用的来检测峰值并将其打包为库并添加测试。...// Call the peakdet function, the second argument is the minimum differece // between the
To discover the spectra of them present obvious difference and the spectra for the blood of the different kind of the patient also present obvious differece, but the spectra of the specifieness ...
#CodeQuiz CodeQuiz 是一款使用 Kivy 框架制作的游戏。 他是一个测验由四个选项组成,Ruby、Python、Javascript 和 C#。... 提交它git commit -m 'the differece' 推送它git push origin name-your-feature 创建
标题中的“慧荣2258xt开卡工具”指的是基于慧荣科技(Silicon Motion)SM2258XT主控芯片的闪存设备管理软件。这种工具主要用于对使用该主控芯片的USB闪存盘进行初始化、修复、格式化等操作,被称为“开卡”或“量产...
内容概要:本文详细介绍了基于SpringBoot和Vue开发的养老院管理系统的具体实现细节。该系统采用前后端不分离的架构,旨在快速迭代并满足中小项目的开发需求。文中涵盖了多个关键技术点,如数据库设计(组合唯一约束、触发器)、定时任务(@Scheduled、@Async)、前端数据绑定(Vue的条件渲染和动态class绑定)、权限控制(RBAC模型、自定义注解)以及报表导出(SXSSFWorkbook流式导出)。此外,还讨论了开发过程中遇到的一些常见问题及其解决方案,如CSRF防护、静态资源配置、表单提交冲突等。 适合人群:具备一定Java和前端开发经验的研发人员,尤其是对SpringBoot和Vue有一定了解的开发者。 使用场景及目标:适用于需要快速开发中小型管理系统的团队,帮助他们理解如何利用SpringBoot和Vue进行全栈开发,掌握前后端不分离架构的优势和注意事项。 其他说明:文章不仅提供了详细的代码示例和技术要点,还分享了许多实用的小技巧和避坑指南,有助于提高开发效率和系统稳定性。
家族企业如何应对人才流失问题?
员工关怀制度.doc
内容概要:本文详细探讨了对传统蚁群算法进行改进的方法,特别是在路径规划领域的应用。主要改进措施包括:采用排序搜索机制,即在每轮迭代后对所有路径按长度排序并只强化前20%的优质路径;调整信息素更新规则,如引入动态蒸发系数和分级强化策略;优化路径选择策略,增加排序权重因子;以及实现动态地图调整,使算法能够快速适应环境变化。实验结果显示,改进后的算法在收敛速度上有显著提升,在复杂地形中的表现更加稳健。 适合人群:从事路径规划研究的技术人员、算法工程师、科研工作者。 使用场景及目标:适用于需要高效路径规划的应用场景,如物流配送、机器人导航、自动驾驶等领域。目标是提高路径规划的效率和准确性,减少不必要的迂回路径,确保在动态环境中快速响应变化。 其他说明:改进后的蚁群算法不仅提高了收敛速度,还增强了对复杂环境的适应能力。建议在实际应用中结合可视化工具进行调参,以便更好地观察和优化蚂蚁的探索轨迹。此外,还需注意避免过度依赖排序机制而导致的过拟合问题。
内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
内容概要:本文详细介绍了丰田Prius2004永磁同步电机的设计流程,涵盖从初始参数计算到最终温升仿真的各个环节。首先利用Excel进行基本参数计算,如铁芯叠厚、定子外径等,确保设计符合预期性能。接着使用Maxwell进行参数化仿真,通过Python脚本自动化调整磁钢尺寸和其他关键参数,优化电机性能并减少齿槽转矩。随后借助橡树岭实验室提供的实测数据验证仿真结果,确保模型准确性。最后采用MotorCAD进行温升仿真,优化冷却系统设计,确保电机运行安全可靠。文中还分享了许多实用技巧,如如何正确设置材料参数、避免常见的仿真错误等。 适合人群:从事电机设计的专业工程师和技术人员,尤其是对永磁同步电机设计感兴趣的读者。 使用场景及目标:适用于希望深入了解永磁同步电机设计全过程的技术人员,帮助他们在实际工作中提高设计效率和精度,解决常见问题,优化设计方案。 其他说明:文章提供了丰富的实战经验和具体的操作步骤,强调了理论与实践相结合的重要性。同时提醒读者注意一些容易忽视的细节,如材料参数的选择和仿真模型的准确性。
内容概要:本文详细介绍了基于DSP28335的单相逆变器的设计与实现,涵盖了多个关键技术模块。首先,ADC采样模块用于获取输入电压和电流的数据,确保后续控制的准确性。接着,PWM控制模块负责生成精确的脉宽调制信号,控制逆变器的工作状态。液晶显示模块则用于实时展示电压、电流等重要参数。单相锁相环电路实现了电网电压的频率和相位同步,确保逆变器输出的稳定性。最后,电路保护程序提供了过流保护等功能,保障系统的安全性。每个模块都有详细的代码示例和技术要点解析。 适合人群:具备一定嵌入式系统和电力电子基础知识的研发人员,尤其是对DSP28335感兴趣的工程师。 使用场景及目标:适用于单相逆变器项目的开发,帮助开发者理解和掌握各个模块的具体实现方法,提高系统的可靠性和性能。 其他说明:文中不仅提供了具体的代码实现,还分享了许多调试经验和常见问题的解决方案,有助于读者更好地理解和应用相关技术。
SecureCRT安装包
内容概要:本文详细介绍了如何利用C#、WPF和MVVM模式构建一个大屏看板3D可视化系统。主要内容涵盖WPF编程设计、自定义工业控件、数据库设计、MVVM架构应用以及典型的三层架构设计。文中不仅提供了具体的代码实例,还讨论了数据库连接配置、3D模型绑定、依赖属性注册等关键技术细节。此外,文章强调了项目开发过程中需要注意的问题,如3D坐标系换算、MVVM中命令传递、数据库连接字符串加密等。 适合人群:具备一定C#编程基础,对WPF和MVVM模式有一定了解的研发人员。 使用场景及目标:适用于希望深入了解WPF和MVVM模式在实际项目中应用的开发者,特别是那些从事工业控制系统、数据可视化平台开发的专业人士。通过学习本文,读者可以掌握如何构建高效、稳定的大屏看板3D可视化系统。 其他说明:本文提供的设计方案和技术实现方式,可以帮助开发者更好地理解和应用WPF和MVVM模式,同时也能为相关领域的项目开发提供有价值的参考。
基于ssm的系统设计,包含sql文件(Spring+SpringMVC+MyBatis)
内容概要:本文详细介绍了利用COMSOL进行非厄米超表面双参数传感器的设计与实现。首先,通过构建超表面单元并引入虚部折射率,实现了PT对称系统的增益-损耗交替分布。接着,通过频域扫描和参数化扫描,捕捉到了复频率空间中的能级劈裂现象,并找到了奇异点(Exceptional Point),从而显著提高了传感器对微小扰动的敏感度。此外,文章探讨了双参数检测的独特优势,如解耦温度和折射率变化的能力,并展示了其在病毒检测、工业流程监控等领域的潜在应用。 适合人群:从事光学传感器研究的专业人士,尤其是对非厄米系统和COMSOL仿真感兴趣的科研人员。 使用场景及目标:适用于需要高精度、多参数检测的应用场合,如生物医学检测、环境监测等。目标是提高传感器的灵敏度和分辨率,解决传统传感器中存在的参数交叉敏感问题。 其他说明:文中提供了详细的建模步骤和代码片段,帮助读者理解和重现实验结果。同时,强调了在建模过程中需要注意的关键技术和常见问题,如网格划分、参数设置等。
怎样健全员工福利体系.docx
离职证明范本.doc
6538b79724855900a9c930904a302920.part6
员工离职单.doc
内容概要:本文详细介绍了在COMSOL中进行超材料异常折射仿真的关键技术。首先解释了异常折射现象及其产生的原因,接着通过具体代码展示了如何利用相位梯度和结构色散精确计算折射角。文中还讨论了边界条件的设置、网格划分的优化以及参数化扫描的应用。此外,提供了多个实用脚本和技巧,帮助提高仿真的精度和效率。最后强调了验证结果的重要性和一些常见的注意事项。 适合人群:从事电磁仿真研究的专业人士,尤其是对超材料和异常折射感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要深入理解和解决超材料中异常折射问题的研究项目。主要目标是掌握COMSOL中异常折射仿真的完整流程,确保仿真结果的准确性并优化计算性能。 其他说明:文章不仅提供了详细的代码示例和技术细节,还分享了许多实践经验,有助于读者更好地应对实际仿真过程中可能出现的问题。