`
火火烽
  • 浏览: 4732 次
最近访客 更多访客>>
文章分类
社区版块
存档分类
最新评论

What the differece between nio and io

    博客分类:
  • Java
阅读更多

When studying both the Java NIO and IO API's, a question quickly pops into mind:

When should I use IO and when should I use NIO?

In this text I will try to shed some light on the differences between Java NIO and IO, their use cases, and how they affect the design of your code.

 

Main Differences of Java NIO and IO

The table below summarizes the main differences between Java NIO and IO. I will get into more detail about each difference in the sections following the table.

IO NIO
Stream oriented Buffer oriented
Blocking IO Non blocking IO
  Selectors

 

Stream Oriented vs. Buffer Oriented

The first big difference between Java NIO and IO is that IO is stream oriented, where NIO is buffer oriented. So, what does that mean?

Java IO being stream oriented means that you read one or more bytes at a time, from a stream. What you do with the read bytes is up to you. They are not cached anywhere. Furthermore, you cannot move forth and back in the data in a stream. If you need to move forth and back in the data read from a stream, you will need to cache it in a buffer first.

Java NIO's buffer oriented approach is slightly different. Data is read into a buffer from which it is later processed. You can move forth and back in the buffer as you need to. This gives you a bit more flexibility during processing. However, you also need to check if the buffer contains all the data you need in order to fully process it. And, you need to make sure that when reading more data into the buffer, you do not overwrite data in the buffer you have not yet processed.

 

Blocking vs. Non-blocking IO

Java IO's various streams are blocking. That means, that when a thread invokes a read() or write() , that thread is blocked until there is some data to read, or the data is fully written. The thread can do nothing else in the meantime.

Java NIO's non-blocking mode enables a thread to request reading data from a channel, and only get what is currently available, or nothing at all, if no data is currently available. Rather than remain blocked until data becomes available for reading, the thread can go on with something else.

The same is true for non-blocking writing. A thread can request that some data be written to a channel, but not wait for it to be fully written. The thread can then go on and do something else in the mean time.

What threads spend their idle time on when not blocked in IO calls, is usually performing IO on other channels in the meantime. That is, a single thread can now manage multiple channels of input and output.

 

Selectors

Java NIO's selectors allow a single thread to monitor multiple channels of input. You can register multiple channels with a selector, then use a single thread to "select" the channels that have input available for processing, or select the channels that are ready for writing. This selector mechanism makes it easy for a single thread to manage multiple channels.

 

How NIO and IO Influences Application Design

Whether you choose NIO or IO as your IO toolkit may impact the following aspects of your application design:

  1. The API calls to the NIO or IO classes.
  2. The processing of data.
  3. The number of thread used to process the data.

 

The API Calls

Of course the API calls when using NIO look different than when using IO. This is no surprise. Rather than just read the data byte for byte from e.g. an InputStream , the data must first be read into a buffer, and then be processed from there.

 

The Processing of Data

The processing of the data is also affected when using a pure NIO design, vs. an IO design.

In an IO design you read the data byte for byte from an InputStream or a Reader . Imagine you were processing a stream of line based textual data. For instance:

Name: Anna
Age: 25
Email: anna@mailserver.com
Phone: 1234567890

This stream of text lines could be processed like this:

InputStream input = ... ; // get the InputStream from the client socket

BufferedReader reader = new BufferedReader(new InputStreamReader(input));

String nameLine   = reader.readLine();
String ageLine    = reader.readLine();
String emailLine  = reader.readLine();
String phoneLine  = reader.readLine();

Notice how the processing state is determined by how far the program has executed. In other words, once the first reader.readLine() method returns, you know for sure that a full line of text has been read. The readLine() blocks until a full line is read, that's why. You also know that this line contains the name. Similarly, when the second readLine() call returns, you know that this line contains the age etc.

As you can see, the program progresses only when there is new data to read, and for each step you know what that data is. Once the executing thread have progressed past reading a certain piece of data in the code, the thread is not going backwards in the data (mostly not). This principle is also illustrated in this diagram:

Java IO: Reading data from a blocking stream.
Java IO: Reading data from a blocking stream.

A NIO implementation would look different. Here is a simplified example:

ByteBuffer buffer = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buffer);

Notice the second line which reads bytes from the channel into the ByteBuffer . When that method call returns you don't know if all the data you need is inside the buffer. All you know is that the buffer contains some bytes. This makes processing somewhat harder.

Imagine if, after the first read(buffer) call, that all what was read into the buffer was half a line. For instance, "Name: An". Can you process that data? Not really. You need to wait until at leas a full line of data has been into the buffer, before it makes sense to process any of the data at all.

So how do you know if the buffer contains enough data for it to make sense to be processed? Well, you don't. The only way to find out, is to look at the data in the buffer. The result is, that you may have to inspect the data in the buffer several times before you know if all the data is inthere. This is both inefficient, and can become messy in terms of program design. For instance:

ByteBuffer buffer = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buffer);

while(! bufferFull(bytesRead) ) {
    bytesRead = inChannel.read(buffer);
}

The bufferFull() method has to keep track of how much data is read into the buffer, and return either true or false , depending on whether the buffer is full. In other words, if the buffer is ready for processing, it is considered full.

The bufferFull() method scans through the buffer, but must leave the buffer in the same state as before the bufferFull() method was called. If not, the next data read into the buffer might not be read in at the correct location. This is not impossible, but it is yet another issue to watch out for.

If the buffer is full, it can be processed. If it is not full, you might be able to partially process whatever data is there, if that makes sense in your particular case. In many cases it doesn't.

The is-data-in-buffer-ready loop is illustrated in this diagram:

Java NIO: Reading data from a channel until all needed data is in 
buffer.
Java NIO: Reading data from a channel until all needed data is in buffer.

 

Summary

NIO allows you to manage multiple channels (network connections or files) using only a single (or few) threads, but the cost is that parsing the data might be somewhat more complicated than when reading data from a blocking stream.

If you need to manage thousands of open connections simultanously, which each only send a little data, for instance a chat server, implementing the server in NIO is probably an advantage. Similarly, if you need to keep a lot of open connections to other computers, e.g. in a P2P network, using a single thread to manage all of your outbound connections might be an advantage. This one thread, multiple connections design is illustrated in this diagram:

Java NIO: A single thread managing multiple connections.
Java NIO: A single thread managing multiple connections.

If you have fewer connections with very high bandwidth, sending a lot of data at a time, perhaps a classic IO server implementation might be the best fit. This diagram illustrates a classic IO server design:

Java IO: A classic IO server design - one connection handled by one
 thread.
Java IO: A classic IO server design - one connection handled by one thread.

 

分享到:
评论

相关推荐

    peakdet:PeakDet 算法的 NodeJS 实现

    Peakdet 是一个 NodeJS 库,用于检测数据中的峰谷。 Peakdet 采用的来检测峰值并将其打包为库并添加测试。...// Call the peakdet function, the second argument is the minimum differece // between the

    采用激光光谱早期诊断癌症

    To discover the spectra of them present obvious difference and the spectra for the blood of the different kind of the patient also present obvious differece, but the spectra of the specifieness ...

    CodeQuiz:一个用 Kivy 制作的游戏,这里有一个简单的编程语言测验

    #CodeQuiz CodeQuiz 是一款使用 Kivy 框架制作的游戏。 他是一个测验由四个选项组成,Ruby、Python、Javascript 和 C#。... 提交它git commit -m 'the differece' 推送它git push origin name-your-feature 创建

    基于微信小程序的在线办公小程序答辩PPT.pptx

    基于微信小程序的在线办公小程序答辩PPT.pptx

    机器学习(预测模型):2000年至2015年期间193个国家的预期寿命和相关健康因素的数据

    这个数据集来自世界卫生组织(WHO),包含了2000年至2015年期间193个国家的预期寿命和相关健康因素的数据。它提供了一个全面的视角,用于分析影响全球人口预期寿命的多种因素。数据集涵盖了从婴儿死亡率、GDP、BMI到免疫接种覆盖率等多个维度,为研究者提供了丰富的信息来探索和预测预期寿命。 该数据集的特点在于其跨国家的比较性,使得研究者能够识别出不同国家之间预期寿命的差异,并分析这些差异背后的原因。数据集包含22个特征列和2938行数据,涉及的变量被分为几个大类:免疫相关因素、死亡因素、经济因素和社会因素。这些数据不仅有助于了解全球健康趋势,还可以辅助制定公共卫生政策和社会福利计划。 数据集的处理包括对缺失值的处理、数据类型转换以及去重等步骤,以确保数据的准确性和可靠性。研究者可以使用这个数据集来探索如教育、健康习惯、生活方式等因素如何影响人们的寿命,以及不同国家的经济发展水平如何与预期寿命相关联。此外,数据集还可以用于预测模型的构建,通过回归分析等统计方法来预测预期寿命。 总的来说,这个数据集是研究全球健康和预期寿命变化的宝贵资源,它不仅提供了历史数据,还为未来的研究和政策制

    基于微信小程序的“健康早知道”微信小程序答辩PPT.pptx

    基于微信小程序的“健康早知道”微信小程序答辩PPT.pptx

    基于微信小程序的电影交流平台答辩PPT.pptx

    基于微信小程序的电影交流平台答辩PPT.pptx

    计算机字符编码GB18030.PDF

    计算机字符编码GB18030

    Hive 操作基础(进阶版)多级分区数据文件2

    Hive 操作基础(进阶版)多级分区数据文件2

    基于java的贫困生管理系统答辩PPT.pptx

    基于java的贫困生管理系统答辩PPT.pptx

    pandas-2.1.4-cp312-cp312-win_amd64.zip

    pandas whl安装包,对应各个python版本和系统(具体看资源名字),找准自己对应的下载即可! 下载后解压出来是已.whl为后缀的安装包,进入终端,直接pip install pandas-xxx.whl即可,非常方便。 再也不用担心pip联网下载网络超时,各种安装不成功的问题。

    TA_Lib轮子无需编译-TA_Lib-0.4.18-cp38-cp38-win32.whl.zip

    TA_lib库(whl轮子),直接pip install安装即可,下载即用,非常方便,各个python版本对应的都有。 使用方法: 1、下载下来解压; 2、确保有python环境,命令行进入终端,cd到whl存放的目录,直接输入pip install TA_lib-xxxx.whl就可以安装,等待安装成功,即可使用! 优点:无需C++环境编译,下载即用,方便

    课设毕设基于SpringBoot+Vue的瑜伽体验课预约系统源码可运行.zip

    本压缩包资源说明,你现在往下拉可以看到压缩包内容目录 我是批量上传的基于SpringBoot+Vue的项目,所以描述都一样;有源码有数据库脚本,系统都是测试过可运行的,看文件名即可区分项目~ |Java|SpringBoot|Vue|前后端分离| 开发语言:Java 框架:SpringBoot,Vue JDK版本:JDK1.8 数据库:MySQL 5.7+(推荐5.7,8.0也可以) 数据库工具:Navicat 开发软件: idea/eclipse(推荐idea) Maven包:Maven3.3.9+ 系统环境:Windows/Mac

    tornado-6.2b2.tar.gz

    tornado-6.2b2.tar.gz

    javawe论坛项目 原生技术

    javawe论坛项目 原生技术

    tornado-6.2b1-cp310-cp310-macosx_10_9_universal2.whl

    tornado-6.2b1-cp310-cp310-macosx_10_9_universal2.whl

    基于司机信用评价的货运管理系统(springboot+vue+mysql+说明文档).zip

    随着物流行业的快速发展,货运管理变得愈发重要。为了提高货运效率,确保货物安全,我们开发了这款基于司机信用评价的货运管理系统。 该系统主要包含了货物信息管理、订单评价管理、货主管理等多个功能模块。在货物信息管理模块中,用户可以查看和管理货物的详细信息,包括货物名称、规格、装车状态、运输状态以及卸货状态等,方便用户随时掌握货物的动态。 订单评价管理模块是该系统的核心之一,它允许货主对司机的服务进行评价,系统会根据评价数据对司机进行信用评分。这一功能不仅有助于提升司机的服务质量,还能为货主提供更加可靠的货运选择。 此外,货主管理模块提供了货主信息的录入、修改和查询等功能,方便用户管理自己的货主资料。系统界面简洁明了,以蓝色为主色调,设计现代且专业,为用户提供了良好的使用体验。 通过该系统,用户可以轻松实现货物信息的查看和管理,对司机的服务进行评价,提高货运效率和服务质量。同时,系统也为司机提供了一个展示自我、提升信用的平台,有助于推动物流行业的健康发展。

    毕业生交流学习平台 SSM毕业设计 附带论文.zip

    毕业生交流学习平台 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B

    基于java的广场舞团答辩PPT.pptx

    基于java的广场舞团答辩PPT.pptx

    基于java的基于SSM的校园音乐平台答辩PPT.pptx

    基于java的基于SSM的校园音乐平台答辩PPT.pptx

Global site tag (gtag.js) - Google Analytics